No Mass Gap Phase Transition in Novel Massless Dirac Fermion Material
© The Physical Society of Japan
This article is on
Quantum Phase Transition in Organic Massless Dirac Fermion System α-(BEDT-TTF)2I3 under Pressure
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 89, 123702 (2020).
Using an organic massless Dirac fermion system, we found that massless Dirac fermions undergo a quantum phase transition without creating any mass gap even in the strong coupling regime.
Quantum Phase Transition in Organic Massless Dirac Fermion System α-(BEDT-TTF)2I3 under Pressure
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 89, 123702 (2020).
Share this topic
Fields
Related Articles
-
Spin Transport in a Two-Dimensional Tilted Dirac Electron System
Electronic transport in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
2022-4-13
We propose that spin current in an organic conductor, α-(BETS)2I3, is an appropriate physical quantity to detect the topological nature of the material whose electrons obey a quasi-two-dimensional Dirac equation.
-
Violation of Fluctuation-Dissipation Theorem Results in Robustness of Fluctuation Against Localization
Statistical physics and thermodynamics
Electronic transport in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
2022-3-23
We study equilibrium current fluctuations in systems without time-reversal symmetry, violating the fluctuation-dissipation theorem. Notably, the off-diagonal fluctuation is insensitive to system imperfections in contrast to other fluctuations and conductivity.
-
Topological Aspects of a Nonlinear System: The Dimerized Toda Lattice
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
2022-3-16
A nonlinear topological phase is shown to emerge in the dimerized Toda lattice. It is experimentally detectable by measuring the voltage propagation in electric circuits.
-
Unusual Nonlinear Conductivity in Charge-Ordered α-(BEDT-TTF)2I3
Electronic transport in condensed matter
2022-3-9
Unusual nonlinear conduction is detected in organic molecular salt α-(BEDT-TTF)2I3. The observed third-order nonlinear conductivity implies a quadrupole instability hidden in this charge-ordered organic salt.
-
Phosphorous-Based Zintl Compounds as Viable Semimetals
Electronic structure and electrical properties of surfaces and nanostructures
Structure and mechanical and thermal properties in condensed matter
Electron states in condensed matter
2022-2-4
A black-phosphorus-derived Zintl compound, MoP4, is obtained by high-pressure synthesis. The material exhibits a non-quadratic large magnetoresistance and semi-metallic Seebeck behavior, as predicted by the first principles calculations yielding massive and non-symmorphic Dirac semimetal states.