
NEW
Singlecrystal NaAlSi Shows Unconventional Superconductivity
2021329
Interesting normal and superconducting states of NaAlSi, a topological nodal line semimetal, were revealed by the measurements using the single crystals grown by the selfflux method.
Superconductivity

NEW
Phase Transition and Its Universality Class for a Quantum Spin Chain
2021329
We numerically diagonalize the DimerTrimer (DT) model Hamiltonian around the SU(3) symmetric point. As a result, we discover the phase transition at this point which belongs to the BerezinskiiKosterlitzThouless (BKT)like universality class.
Statistical physics and thermodynamics
Magnetic properties in condensed matter

NEW
Splitting Walls: Interplay of Different Orders in Multiferroic Materials
2021329
We theoretically showed an intrinsic splitting instability of composite domain walls in multiferroic materials under field drive. This instability is a direct result of the coexistence of multiple orders in the system.
Magnetic properties in condensed matter
Statistical physics and thermodynamics

NEW PICKUP
Random Numbers Can Help Solve Difficult Problems in Manybody Physics
2021329
Theorists review a random state vectorbased description of quantum manybody systems which helps greatly reduce the computational burden involved in their numerical simulations, opening doors to applications in quantum computing.
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, comupational modeling
Electronic transport in condensed matter
Magnetic properties in condensed matter

NEW
A New Approach to Solving Periodic Differential Systems
2021329
Mathematicians and physicists are well acquainted with secondorder ordinary differential equations (ODE), the most prominent of them being the class of equations that govern oscillatory motion.
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, comupational modeling

PICKUP
Hybrid Quantum–Classical Algorithms: At the Verge of Useful Quantum Computing
2021322
Scientists discuss the recent progress in algorithms that have enabled hybrid quantum–classical computers, which has brought the quest to realize useful quantum computing much closer to its finish line.
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, comupational modeling
Crossdisciplinary physics and related areas of science and technology

Quantum Phase Transition in Spin Dimer Systems
2021322
A magnetic moment fluctuates in both longitudinal and transverse directions. The total moment sum rule is a conservation law that can help us resolve data of neutron scattering into the two components.
Magnetic properties in condensed matter

No Mass Gap Phase Transition in Novel Massless Dirac Fermion Material
2021322
Using an organic massless Dirac fermion system, we found that massless Dirac fermions undergo a quantum phase transition without creating any mass gap even in the strong coupling regime.
Electron states in condensed matter
Electronic transport in condensed matter

Of Spins and Atoms: Combining Rotations to Obtain Directed Motion
2021322
The coupling between surface acoustic waves and spin waves is shown to depend strongly on the angle between the acoustic wavevector and magnetization. For a particular angle, it completely vanishes in one direction, which enables a unidirectional generation of surface acoustic waves by a ferromagnetic resonance.
Magnetic properties in condensed matter
Electromagnetism, optics, acoustics, heat transfer, and classical and fluid mechanics

Reducing the Number of Tests Using Bayesian Inference to Identify Infected Patients in Group Testing
2021322
Group testing is a method of identifying infected patients by performing tests on a pool of specimens. Bayesian inference and a corresponding belief propagation (BP) algorithm are introduced to identify the infected patients in group testing.
Statistical physics and thermodynamics
Crossdisciplinary physics and related areas of science and technology