Unification of Spin Helicity in the Magnetic Skyrmion Lattice of EuNiGe3
© The Physical Society of Japan
This article is on
Helicity Unification by Triangular Skyrmion Lattice Formation in the Noncentrosymmetric Tetragonal Magnet EuNiGe3
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 93, 074705 (2024).
In the magnetic skyrmion lattice of non-centrosymmetric EuNiGe3, the original magnetic helicity, determined by the antisymmetric exchange interaction, is reversed, resulting in a unified helicity.
The spins of magnetic atoms often form a spin-swirling particle-like structure and then organize themselves into a lattice. This spectacular state is known as a magnetic skyrmion lattice, which is usually a triangular lattice. The skyrmion lattice is represented by a superposition of three helimagnetic waves propagating at 120°angle from each other. Since the helimagnetic structures have either a right-handed or left-handed helicity, the Dzyaloshinskii–Moriya-type antisymmetric interaction, which governs helicity selection, has been considered as necessary for the formation of a magnetic skyrmion lattice. In fact, many magnetic skyrmion lattices have been observed in magnetic materials with chiral crystal structures lacking both inversion and mirror symmetries, such as MnSi and EuPtSi. Recently, however, magnetic skyrmion lattices have been observed in materials with inversion symmetry, such as Gd2PdSi3 and GdRu2Si2, although these materials lack antisymmetric interactions. This observation raises an interesting question about magnetic materials, such as EuNiGe3, that lack inversion symmetry but possess mirror planes: What kind of magnetic skyrmion lattice is formed when opposite antisymmetric interactions coexist?
In this study, we focused on the magnetic field-induced ordered phase of the tetragonal EuNiGe3, which might be a magnetic skyrmion lattice phase. We searched for the three magnetic propagation vectors. Furthermore, the magnetic helicity was investigated using circularly polarized resonant X-ray diffraction. In the helimagnetic ordered phase at zero field, it was clarified that two of the four domains have positive helicity, while the other two have negative helicity, reflecting the fourfold and mirror symmetries of the crystal.
When a magnetic skyrmion lattice is formed in a magnetic field, the three helimagnetic components propagating in different directions couple together. We revealed that all three helimagnetic components of the magnetic skyrmion lattice have the same helicity. Surprisingly, the helicity of one of these components is reversed from that in the zero-field helical phase. Another component, which should originally form a longitudinal cycloid structure, also adopts a helical structure with the same helicity as that of other components. This change indicates that the energy gain obtained by unifying the helicity dominates the inherent antisymmetric interactions.
It is intriguing that the preference to form a triangular lattice in the framework of the tetragonal crystal results in the distortion of the triangular skyrmion lattice. This highlights the diversity in the formation of magnetic skyrmion lattices.
(Written by T. Matsumura on behalf of all the authors)
Helicity Unification by Triangular Skyrmion Lattice Formation in the Noncentrosymmetric Tetragonal Magnet EuNiGe3
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 93, 074705 (2024).
Share this topic
Fields
Related Articles
-
Pressure-Tuned Classical–Quantum Crossover in Magnetic Field-Induced Quantum Phase Transitions of a Triangular-Lattice Antiferromagnet
Magnetic properties in condensed matter
Electron states in condensed matter
Cross-disciplinary physics and related areas of science and technology
2024-9-5
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.
-
Antiferromagnetism Induces Dissipationless Transverse Conductivity
Electronic transport in condensed matter
Magnetic properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
2024-7-24
An investigation using high-quality NbMnP crystals demonstrates that the anomalous Hall conductivity arising from antiferromagnetism is dissipationless, as expected from the intrinsic mechanism.
-
Structural Rotation and Falsely Chiral Antiferromagnetism: A New Combination Generating Ferrotoroidic State
Magnetic properties in condensed matter
Dielectric, optical, and other properties in condensed matter
2024-7-4
The ferrotoroidic state, an exotic state of matter with broken space inversion and time-reversal symmetries, was achieved by combining structural rotation and falsely chiral antiferromagnetism in PbMn2Ni6Te3O18.
-
Understanding Electronic Ordering and Cross Correlations with Multipole Representation
Magnetic properties in condensed matter
2024-6-12
This study reviews the recent advancements in research of multipole representations for understanding electronic orderings and cross-correlations in materials and presents future research directions.
-
Microscopic Exploration of Electronic States in Nickelate Superconductors
Magnetic properties in condensed matter
Superconductivity
2024-5-31
The multilayered nickelates, La3Ni2O7 and La4Ni3O10 , were investigated using nuclear magnetic resonance (NMR) at ambient pressure. Metallic electronic states under the density wave order were observed microscopically for both compounds.