Exploring Electronic States in BEDT-TTF Organic Superconductors
© The Physical Society of Japan
This article is on
Mottness and Spin Liquidity in a Doped Organic Superconductor κ-(BEDT-TTF)4Hg2.89Br8
J. Phys. Soc. Jpn. 93, 042001 (2024).
This review, published in the Journal of the Physical Society of Japan, provides a comprehensive summary of the electronic states observed in BEDT-TTF type organic superconductors, including metal-insulator transitions, Mottness transitions, non-Fermi liquids, quantum spin liquids, and Bose-Einstein condensation.
Much like inorganic metals, organic compounds can exhibit superconductivity at low temperatures where electrons move through the material without any resistance. However, unlike conventional inorganic metals, the superconductivity is due to strong electron-electron interactions.
To reveal the electronic states responsible for the material’s superconducting behavior, a review published in Journal of the Physical Society of Japan summarizes the electronic states inherent in a BEDT-TTF or bis(ethylenedithio)tetrathiafulvalene type of organic superconductor.
κ-type BEDT-TTF compounds have a layered structure composed of anion layers and BEDT-TTF layers. These molecules form a distinctive triangular lattice, resulting in a hole-like Fermi surface at half-filling, where strong electron correlations hold electrons at the lattice sites, leading to a Mott insulating state.
The review highlights that, under pressure, the compound with a half-filled electronic configuration undergoes a metal-insulator transition due to a shift in the occupancy of electronic states. This is accompanied by the Mottness transition which is the tendency or degree of prohibited double occupation. However, when additional charge carriers are introduced into the material through doping, the excess electrons or holes make the material conductive even under the prohibition of double occupancy.
In such cases, two distinct metallic states are formed: a conventional Fermi liquid at high pressures and a non-Fermi liquid state at low pressures. The high-pressure state exhibits typical Bardeen-Cooper-Schrieffer superconductivity due to Cooper pairing of conventional Fermi particles. As the material passes through the Mottness transition at low pressures, it behaves as a quantum spin liquid, exhibiting Bose-Einstein Condensate-like superconductivity.
These findings underscore the significance of pressure and cooling in effectively managing electron interactions, that lead to the formation of a superconducting state.
The insights gained may contribute to understanding similar phenomena in complex electron systems and hold potential value in the information industry, where efficient electron control is essential for energy conservation.
Mottness and Spin Liquidity in a Doped Organic Superconductor κ-(BEDT-TTF)4Hg2.89Br8
J. Phys. Soc. Jpn. 93, 042001 (2024).
Share this topic
Fields
Related Articles
-
Pressure-Tuned Classical–Quantum Crossover in Magnetic Field-Induced Quantum Phase Transitions of a Triangular-Lattice Antiferromagnet
Magnetic properties in condensed matter
Electron states in condensed matter
Cross-disciplinary physics and related areas of science and technology
2024-9-5
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.
-
Discovery of Light-Induced Mirror Symmetry Breaking
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
2024-9-2
The authors discovered the light-induced mirror symmetry breaking, paving the way for controlling mirror symmetries via light and for realizing various phenomena utilizing the mirror symmetry breaking.
-
The Mysterious Superconductivity of Sr2RuO4
Superconductivity
2024-8-22
Researchers review the recent advancements made towards solving the mysteries of the unconventional superconductivity of Sr2RuO4, analyzing recent experiments and theoretical models and proposing approaches to resolve current challenges.
-
Discovery of Unconventional Pressure-Induced Superconductivity in CrAs
Superconductivity
Electronic transport in condensed matter
2024-8-13
A new study has discovered pressure-induced superconductivity in the helimagnet CrAs, originating in the vicinity of the helimagnetic ordering, representing the first example of superconductivity in Cr-based magnetic systems.
-
Unification of Spin Helicity in the Magnetic Skyrmion Lattice of EuNiGe3
Magnetic properties in condensed matter
2024-8-7
In the magnetic skyrmion lattice of non-centrosymmetric EuNiGe3, the original magnetic helicity, determined by the antisymmetric exchange interaction, is reversed, resulting in a unified helicity.