Variety of Mechanically Induced Spin Currents in Rashba Systems
© The Physical Society of Japan
This article is on
J. Phys. Soc. Jpn.
92,
113702
(2023)
.
Various types of spin currents, including unconventional types, are generated in Rashba spin-orbit coupled systems by dynamic lattice distortions associated with, for example, surface acoustic waves.

Spin current, the flow of spin angular momentum, is a central element in spintronics for future technological applications. Thus, elucidating various mechanisms to generate spin currents is an important topic. Since the discovery of the gyromagnetic effect more than 100 years ago by Einstein, de Haas, and Barnett, spin angular momentum has been known to be mutually converted with the mechanical angular momentum associated with rotational motion of materials. This suggests that spin currents can be generated mechanically. Present-day experiments have shown that spin currents are generated by shear flows in liquid metals and by surface acoustic waves in solids.
The electron spin also interacts with its orbital motion through relativistic effects, that is, the spin-orbit interaction (SOI). The SOI is responsible for various spin-current generation methods because it bends the electron orbits in spin-dependent directions. In particular, the Rashba SOI appears in systems with broken spatial inversion symmetries, such as at the surfaces and interfaces of materials. When generating spin currents using surface acoustic waves, the effects of Rashba SOI may be utilized.
In this study, we investigated spin-current generation from dynamic lattice distortions in systems with Rashba SOI. Unlike prior theoretical studies, we started from a multiorbital tight-binding model to derive a Rashba model perturbed by lattice distortions. This method enabled us to treat the lattice distortion effects microscopically through the modulation of hopping integrals and local rotation of the crystal axes. By calculating the linear response to the effective perturbations, we observed that surface acoustic waves can generate a variety of spin currents through the Rashba SOI, including unconventional spin currents, such as the quadrupolar spin current, perpendicular spin current, and helicity current.
Written by Y. Ogawa on behalf of all authors.
J. Phys. Soc. Jpn.
92,
113702
(2023)
.
Share this topic
Fields
Related Articles
-
Ferroaxial Order: Visualizing Domain States with Chirality Induced by an Applied Electric Field
Dielectric, optical, and other properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-7-7
Ferroaxial domains were visualized in the glaserite-type compound Na2BaM(PO4)2 (M = divalent metal) using the linear electrogyration effect with polarization microscopy combined with a field-modulation imaging technique.
-
Is Quantum Turbulence Enhanced by Normal-Fluid Turbulence?
Electromagnetism, optics, acoustics, heat transfer, and classical and fluid mechanics
Structure and mechanical and thermal properties in condensed matter
2025-7-1
The coupled dynamics between quantum turbulence and normal-fluid turbulence is investigated via advanced numerical simulations. Our simulations show that quantum turbulence can be enhanced by normal-fluid turbulence through internal mutual friction.
-
Metallising the Mott Insulator Ca2RuO4 Takes Time—Just Like Ageing Fine Whisky in a Cask
Electronic transport in condensed matter
2025-6-24
Ion gating on the surface of the Mott insulator Ca2RuO4 induces the progression of metallisation into the bulk interior without the influence of the current flow.
-
Magnetic Shape Memory Effect in a Heavy-Fermion System CeSb2
Magnetic properties in condensed matter
2025-6-16
A magnetic shape memory effect, easy magnetization axis switching accompanied by crystallographic axis conversion, has been discovered in a heavy electron system CeSb₂.
-
Electrons and Phonons in Chiral Crystals: Angular Momentum along Twisting Paths in Helical Structures
Electron states in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-6-10
This study shows electrons interact with chiral phonons via crystal angular momentum, revealing a new angular momentum transfer mechanism and advancing quantum dynamics understanding in chiral materials.