Dzyaloshinskii–Moriya Interactions in Magnetism, Electricity, and Electronics
© The Physical Society of Japan
This article is on
JPSJ Special Topics on Dzyaloshinskii–Moriya Interactions: Physics of Inversion Symmetry Breaking
J. Phys. Soc. Jpn. Vol.92 No.8 (2023).
A collection of papers in the Journal of the Physical Society of Japan advances our understanding of Dzyaloshinskii–Moriya interaction and paves the way for developing next generation computing and electronic systems.
Magnetism in materials arises due to the alignment of electron spins, which generates intrinsic magnetic moments. However, in certain magnetic materials with broken inversion symmetry and significant spinorbit coupling, the electron spins tend towards aligning perpendicular to each other, resulting in noncollinear and chiral magnetic structures. This antisymmetric interaction is known as Dzyaloshinskii–Moriya interaction, or DMI. It has drawn wide interest across various research areas, including quantum spin systems, multiferroics, and spintronics.
A “Special Topics” edition of the Journal of the Physical Society of Japan, presents a collection of papers examining the magnetic properties resulting from DMI.
Fert et al. discuss the research advances in DMI and its role in designing innovative magnetic devices in the field of modern spintronics. Nagaosa describes the physics of multiferroics and related topics including emergent inductance, nonreciprocal nonlinear resistivity, superconducting multiferroics, and the presence of skyrmions in chiral magnets. Ohta elaborates on the dynamic aspects of DMI in quantum spin systems, focusing on its role in exotic quantum magnets with unique geometries like chains, kagome lattices, and honeycomb structures.
Mazurenko et al. offer insights into machine learning algorithms for characterizing magnetic skyrmions that originate from DMI, potentially benefitting nearterm quantum computers. Mostovoy discusses the methods to manipulate magnetic topological defects, which may be useful for developing low energyconsumption memory and data processing devices. Togawa et al. explore how DMI is related to chirality in chiral crystals, and examine its effects on the magnetic, electronic, spintronic, and phononic properties of these materials.
Kammerbauer et al. discuss how DMI, that emerges in various systems, can be manipulated using electrical fields and currents. This may pave the way for the development of new devices based on the capacity to control DMI sign and strength.
Finally, Tokunaga et al. look at the inverse effect of DMI on magnetoelectric multiferroics and skyrmion materials. They classify these materials based on their magnetic structure and also present examples of DMI phenomena such as nonlinear magnetoelectric effects, and the formation of magnetic skyrmions.
Collectively, these articles aim to advance our understanding of DMI or Dzyaloshinskii–Moriya interaction and pave the way for the development of nextgeneration computing and electronic systems.
JPSJ Special Topics on Dzyaloshinskii–Moriya Interactions: Physics of Inversion Symmetry Breaking
J. Phys. Soc. Jpn. Vol.92 No.8 (2023).
Share this topic
Fields
Related Articles

Solving a Stochastic Differential Equation is Solving a MeanField Quantum Spin System
Statistical physics and thermodynamics
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Magnetic properties in condensed matter
2024516
The replica method maps matrixvalued geometric Brownian motion to a meanfield quantum spin system. This correspondence makes it possible to obtain an exact solution for matrixvalued geometric Brownian motion.

Exploring Electronic States in BEDTTTF Organic Superconductors
Superconductivity
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024424
This review, published in the Journal of the Physical Society of Japan, provides a comprehensive summary of the electronic states observed in BEDTTTF type organic superconductors, including metalinsulator transitions, Mottness transitions, nonFermi liquids, quantum spin liquids, and BoseEinstein condensation.

Variety of Mechanically Induced Spin Currents in Rashba Systems
Electronic transport in condensed matter
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2024322
Various types of spin currents, including unconventional types, are generated in Rashba spinorbit coupled systems by dynamic lattice distortions associated with, for example, surface acoustic waves.

Current Melt Frozen Electrons
Dielectric, optical, and other properties in condensed matter
Magnetic properties in condensed matter
2024115
The origin of the currentinduced insulatortometal transition of samarium monosulfide was explained by the 4f−5d hybridization observed using optical reflectivity and photoelectron spectroscopies.

Towards Uncovering the Hidden Order of URu_{2}Si_{2} Phase Transition
Magnetic properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
2024111
We propose a chiral charge as the hidden order parameter in URu_{2}Si_{2} and present experiments to detect it by focusing on breakings of mirror and inversion symmetries at the local uranium ion.