Self-Energy Singularity Explains High-Temperature Superconductivity in Cuprates
© The Physical Society of Japan
This article is on
Nonperturbative Calculations for Spectroscopic Properties of Cuprate High-Temperature Superconductors
J. Phys. Soc. Jpn. 92, 092001 (2023).
A new review discusses the high-temperature superconductivity mechanisms in copper oxides, explaining the various phases observed in these materials based on a nonperturbative effect called self-energy singularity.
Superconductivity is the property of certain materials to conduct electricity with no energy losses when cooled below a critical temperature. The discovery of high-temperature copper oxide (or cuprate) superconductors, whose critical temperatures reach about 160 K, has unlocked various potential applications.
However, the mechanisms driving the high-temperature superconductivity are not fully understood, primarily due to challenges in dealing with the electron–electron interactions within the materials. Spectroscopic experiments and nonperturbative theories have been used to explain the high-temperature superconductivity in cuprates.
Recently, in a new study published in the Journal of the Physical Society of Japan , researcher Shiro Sakai from the Center for Emergent Matter Science at RIKEN, Japan, reviewed the results of these studies, highlighting that superconductivity in cuprates can be explained by the existence of a self-energy singularity.
The singular self-energy, described as a nonperturbative effect, arises from strong correlations between electrons. Referred to as the ‘missing link,’ the self-energy singularity offers a unifying explanation for the various phases observed in cuprates as well as for a number of experimental observations that have been considered ‘anomalies’ and remain poorly understood.
Cuprates exhibit superconductive properties only within a doping range of 5–25%. At lower doping, hole-doped cuprates behave as Mott insulators, while at higher doping, they show a Fermi-liquid behavior. Additionally, in the underdoped regions lying above the critical temperature, an enigmatic pseudogap state emerges.
It is known that the singular self-energy exists in the Mott insulating state, where it generates a spectral gap. On top of that, nonperturbative calculations have revealed its presence in the finite-doping region as well, where it enhances the superconductivity transition temperature and generates the pseudogap above it.
Therefore, the self-energy singularity is at the origin of the high-temperature superconductivity, the pseudogap, and the Mott insulator phases in cuprates. This review thus sheds light on the complex nature of cuprates, paving the way for the design and discovery of new superconductors with higher critical temperatures.
Nonperturbative Calculations for Spectroscopic Properties of Cuprate High-Temperature Superconductors
J. Phys. Soc. Jpn. 92, 092001 (2023).
Share this topic
Fields
Related Articles
-
Exploring Vortex Dynamics in a Multi-band Superconductor
Superconductivity
2023-8-22
We measured the microwave flux-flow Hall effect in FeSe, where the cancellation of holes and electrons was observed. This is a novel effect of multi-band superconductors.
-
Double Superconductivity in Nodal Line Material NaAlSi; Coexistence of Bulk and 2D Superconductivities
Superconductivity
Electronic structure and electrical properties of surfaces and nanostructures
2023-7-26
Unique diamagnetic torque signals are found in the nodal line material NaAlSi, which suggests the presence of double superconductivity; i.e., bulk superconductivity and 2D superconductivity on the crystal surface.
-
Ultra Purification Unveils the Intrinsic Nature in Spin-Triplet Superconductor UTe2
Superconductivity
Magnetic properties in condensed matter
2023-7-5
Microscopic spin-susceptibility measurements in ultra-pure UTe2 samples reveal that superconducting symmetry is analogous to the superfluidity of the 3He B-phase and that U deficiency has a significant impact on superconducting properties.
-
Fingerprint of Majorana Zero Modes through Nonlocal Measurements
Superconductivity
2023-5-23
The enhancement and robustness of the 2π periodic Aharonov-Bohm effect can serve as a nonlocal probe of Majorana zero modes in topological superconductors that are not restricted by fermion parity.
-
Towards a New Phase in Materials Science with Hyperordered Structures
Structure and mechanical and thermal properties in condensed matter
Cross-disciplinary physics and related areas of science and technology
Dielectric, optical, and other properties in condensed matter
Electron states in condensed matter
Atomic and molecular physics
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
2023-5-1
A Special Topics edition of the Journal of the Physical Society of Japan features articles discussing recent advancements in hyperordered structures in materials, their applications, and the techniques for observing them.