High Magnetic Field as a Tool for Discovery in Condensed Matter Physics
© The Physical Society of Japan
This article is on
JPSJ Special Topics on ”Modern Physics Discovered by Pulsed High Magnetic Fields”
J. Phys. Soc. Jpn. Vol.91 No.11 (2022).
The Journal of the Physical Society of Japan highlights in this special topic recent advances in modern physics that have been realized with the generation of pulsed high magnetic fields.
High magnetic fields hold the key to uncovering several exotic quantum phenomena arising at low temperatures that are of interest in condensed matter physics. Recently, the techniques for generating high magnetic fields and performing high field-based measurements has advanced exponentially. The highest generated magnetic field has reached 1000 T, while measurements of material properties can now be performed at fields as high as 60 T.
In view of this, the Journal of the Physical Society of Japan has published eight papers under a Special Topic highlighting modern physics discoveries enabled by high magnetic fields.
A paper by Sakai describes materials with alternating layers of Dirac electrons and magnetic blocking that could lead to guidelines for extending Dirac electron physics beyond graphene for future applications in electronics.
Another study by Kanazawa et al. reviews experimental evidences of topological phase transitions and the topologically-protected magnetic order in high magnetic fields.
Another article by Yoshida reviews frustrated Kagome antiferromagnets and their magnetization plateaus under high magnetic fields.
A study by Kohama provides a state-of-the-art calorimetry system for exploring low-dimensional and frustrated quantum magnets at high fields.
Strongly correlated electronic materials are explored in another study by Jaime that provides a review of spin lattice coupling in magnetorestricted electronic materials.
The Rice Advanced Magnet with Broadband Optics (RAMBO) has enabled optical probing under high magnetic fields. In a review, Tay et al. explores studies that used RAMBO to reveal the unique excitations of excitons, plasmons, magnons, and phonons.
In another study, Narumi et al. provides two methods, x-ray magnetic circular dichroism spectroscopy and proximity detector oscillator, for exploring magnetization in magnetic materials at high field conditions.
Finally, Matsuda et al. summarizes a metal-insulator transition observed in doped and pure vanadium oxide at 1000 T along with promising future research directions.
Overall, high magnetic fields, as suggested by this special topic, are expected to contribute to cutting-edge research in a wide range of topics.
JPSJ Special Topics on ”Modern Physics Discovered by Pulsed High Magnetic Fields”
J. Phys. Soc. Jpn. Vol.91 No.11 (2022).
Share this topic
Fields
Related Articles
-
Powered by Machine Learning: Obtaining Spectral Conductivity and Chemical Potential of Thermoelectric Materials from Experimental Data
Structure and mechanical and thermal properties in condensed matter
2023-1-31
We propose a machine-learning method to obtain the fundamental physical quantity, namely, the spectral conductivity, from experimental data of thermoelectric coefficients. Our study introduces a new data-driven approach that reveals the underlying low-energy electronic states of high-performance thermoelectric materials.
-
Thickness-Dependent Oscillation Behavior of Magnetic Phase Transitions in Pt Ultrathin Films with Small Orbital Moment
Magnetic properties in condensed matter
2023-1-6
Ferromagnetism in nano-Pt films originates from the quantum-confinement effect that depends on film thickness. Studies of the electronic states of nano-Pt will aid in developing methods for efficiently utilizing its large spin-orbit coupling.
-
Phonon Simulations and Its Applications
Structure and mechanical and thermal properties in condensed matter
2022-12-26
Computation of phonons using first principles has many applications for understanding crystal properties. This review provides an overview of the present capabilities of such simulations using finite displacement supercell approach.
-
Terahertz Radiation as a Tool for Exploring Material Properties
Dielectric, optical, and other properties in condensed matter
2022-12-8
Researchers from Japan highlight, in a recent review, the range of material properties that can be and have been studied using the phenomenon of femtosecond laser-induced terahertz radiation emission.
-
Understanding the Obscure Antiferromagnetism in α-Mn by Nuclear Magnetic Resonance
Magnetic properties in condensed matter
2022-11-29
Although Mn is an elementary metal, the antiferromagnetic state of α-Mn is still obscure. Our NMR study on high-quality α-Mn provides new insights into the symmetry of its antiferromagnetism.