High Magnetic Field as a Tool for Discovery in Condensed Matter Physics
© The Physical Society of Japan
This article is on
JPSJ Special Topics on ”Modern Physics Discovered by Pulsed High Magnetic Fields”
J. Phys. Soc. Jpn. Vol.91 No.11 (2022).
The Journal of the Physical Society of Japan highlights in this special topic recent advances in modern physics that have been realized with the generation of pulsed high magnetic fields.
High magnetic fields hold the key to uncovering several exotic quantum phenomena arising at low temperatures that are of interest in condensed matter physics. Recently, the techniques for generating high magnetic fields and performing high field-based measurements has advanced exponentially. The highest generated magnetic field has reached 1000 T, while measurements of material properties can now be performed at fields as high as 60 T.
In view of this, the Journal of the Physical Society of Japan has published eight papers under a Special Topic highlighting modern physics discoveries enabled by high magnetic fields.
A paper by Sakai describes materials with alternating layers of Dirac electrons and magnetic blocking that could lead to guidelines for extending Dirac electron physics beyond graphene for future applications in electronics.
Another study by Kanazawa et al. reviews experimental evidences of topological phase transitions and the topologically-protected magnetic order in high magnetic fields.
Another article by Yoshida reviews frustrated Kagome antiferromagnets and their magnetization plateaus under high magnetic fields.
A study by Kohama provides a state-of-the-art calorimetry system for exploring low-dimensional and frustrated quantum magnets at high fields.
Strongly correlated electronic materials are explored in another study by Jaime that provides a review of spin lattice coupling in magnetorestricted electronic materials.
The Rice Advanced Magnet with Broadband Optics (RAMBO) has enabled optical probing under high magnetic fields. In a review, Tay et al. explores studies that used RAMBO to reveal the unique excitations of excitons, plasmons, magnons, and phonons.
In another study, Narumi et al. provides two methods, x-ray magnetic circular dichroism spectroscopy and proximity detector oscillator, for exploring magnetization in magnetic materials at high field conditions.
Finally, Matsuda et al. summarizes a metal-insulator transition observed in doped and pure vanadium oxide at 1000 T along with promising future research directions.
Overall, high magnetic fields, as suggested by this special topic, are expected to contribute to cutting-edge research in a wide range of topics.
JPSJ Special Topics on ”Modern Physics Discovered by Pulsed High Magnetic Fields”
J. Phys. Soc. Jpn. Vol.91 No.11 (2022).
Share this topic
Fields
Related Articles
-
A Neural Thermometer for Predicting Phase Transitions of Unknown Systems
Measurement, instrumentation, and techniques
Statistical physics and thermodynamics
2024-9-11
A novel convolutional neural network predicts phase transition temperatures from spin configurations without prior information about order parameters, paving the way for the discovery of new materials in condensed matter physics.
-
Pressure-Tuned Classical–Quantum Crossover in Magnetic Field-Induced Quantum Phase Transitions of a Triangular-Lattice Antiferromagnet
Magnetic properties in condensed matter
Electron states in condensed matter
Cross-disciplinary physics and related areas of science and technology
2024-9-5
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.
-
Discovery of Light-Induced Mirror Symmetry Breaking
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
2024-9-2
The authors discovered the light-induced mirror symmetry breaking, paving the way for controlling mirror symmetries via light and for realizing various phenomena utilizing the mirror symmetry breaking.
-
Discovery of Unconventional Pressure-Induced Superconductivity in CrAs
Superconductivity
Electronic transport in condensed matter
2024-8-13
A new study has discovered pressure-induced superconductivity in the helimagnet CrAs, originating in the vicinity of the helimagnetic ordering, representing the first example of superconductivity in Cr-based magnetic systems.
-
Unification of Spin Helicity in the Magnetic Skyrmion Lattice of EuNiGe3
Magnetic properties in condensed matter
2024-8-7
In the magnetic skyrmion lattice of non-centrosymmetric EuNiGe3, the original magnetic helicity, determined by the antisymmetric exchange interaction, is reversed, resulting in a unified helicity.