FieldsMagnetic properties in condensed matter
-
Extending Machine Learning to Fermion–Boson Coupled Systems and Excited-State Calculations
2021-3-15
We have demonstrated the power of machine learning in representing quantum many-body states accurately. We have extended the applicability of neural-network wave functions and shown their usefulness in fermion-boson-coupled systems and excited-state calculations.
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
-
Novel Material Shows Unconventional Superconductivity with Magnetic Order Under Pressure
2021-3-3
Multiple superconductivity wad found in the novel spin-triplet superconductor UTe2, which is called “Silicon of Quantum Computers”. A complicated spin-triplet state is realized as a consequence of spin degree of freedom. This result will lead to a new state of topological superconductivity.
Superconductivity
Magnetic properties in condensed matter
-
Multiple Superconducting Phases in UTe2: A Complex Analogy to Superfluid Phases of 3He
2021-3-3
In quantum liquids, large differences are observed owing to differences in quantum statistics. The physical properties of liquid 3He (Fermion) and 4He (Boson) are considerably different at low temperatures. After the discovery of superconductivity in electron (i.e., Fermion) systems, a similar pairing ordered state was expected for 3He. Remarkably, the observed ordered state of 3He was more surprising than expected, multiple superfluid phases in the T–P phase diagram. The origin of the multiple phases was attributed to ferromagnetic interactions in the p-wave symmetry state.
Superconductivity
Magnetic properties in condensed matter