Geometry-Based Nonlinear and Nonequilibrium Phenomena in Solids
© The Physical Society of Japan
This article is on
J. Phys. Soc. Jpn.
92,
072001
(2023)
.
Researchers from The University of Tokyo have recently reviewed geometric aspects of nonlinear and nonequilibrium optical phenomena for advanced materials applications in novel solar panels, photodetectors, diodes, and quantum computing.
A solid crystal contains an innumerable number of electrons which give rise to various interesting and functional properties.
The geometric nature of electrons in solids, known as Bloch electrons, provides novel nonlinear and nonequilibrium phenomena, making its understanding crucial. Therefore, a group of researchers from Japan has recently reviewed the latest developments in the research of such phenomena in solids, with a focus on their geometrical aspects.
The geometrical phase of Bloch electrons is quantified by a parameter called the Berry connection, which measures the coordinate of a Bloch state located away from the center of the unit cell. Engineering the geometrical phase of electrons in crystals generates shift current, a bulk photovoltaic effect and nonreciprocal current, a nonlinear transport phenomenon.
While the Berry connection describes the nonlinear responses of electrons in bulk crystals, the nonequilibrium phenomena can be accounted for using the Floquet theory. It explains the time-evolution of an electron in an oscillating electromagnetic field, characteristic of periodically-driven systems.
The researchers highlight that by illuminating intense laser light, it is possible to drastically change the geometric properties of electrons in trivial materials to develop materials with interesting properties, such as topological insulators, magnets, and superconductors.
Furthermore, geometric nonlinear phenomena in inversion symmetry-broken materials have potential applications in several areas, such as solar panels made of bulk crystals, highly efficient photodetectors, and novel diodes. Also, light induced topological superconductivity could provide a new platform for quantum computing.
In summary, understanding the geometric aspects of nonlinear optical phenomena in crystals would facilitate advanced materials with novel applications.
J. Phys. Soc. Jpn.
92,
072001
(2023)
.
Share this topic
Fields
Related Articles
-
Superconducting Diode Using Semiconductor Quantum Dots
Electronic structure and electrical properties of surfaces and nanostructures
Superconductivity
2025-6-5
The superconducting diode effect is proposed for a three-terminal semiconductor double-quantum-dot device. This effect is considerably enhanced by the Dirac-point singularities in the superconducting phase space.
-
Extreme Magnetoresistance Reveals Unexpected Insulating Phase in a Semimetal
Electronic transport in condensed matter
2025-5-21
We discovered an anomalous quantum state in which electric conduction exhibits a gapped behavior exclusively in one direction, in the quantum limit of the BiSb alloy under strong magnetic fields.
-
Higher-Order Topological Phases in Magnetic Materials with Breathing Pyrochlore Structures
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
2025-4-7
A simple example of a higher-order topological phase, in which the symmetry decreases step-by-step from the bulk to the corner, is realized in a magnetic system with a pyrochlore structure and is characterized by a series of quantized Berry phases defined for the bulk, surface, and edge.
-
A Unified Theory of Topological Hall Effect
Electronic transport in condensed matter
2025-3-6
This paper presents a unified theoretical description for the topological Hall effect, covering the entire region from strong- to weak-coupling, extending its picture beyond the Berry phase.
-
Excitonic Insulators: Challenges in Realizing a Theoretically Predicted State of Matter
Electron states in condensed matter
Electronic transport in condensed matter
2025-3-3
The realization of an excitonic insulator can help in the establishment of a new electronic state in condensed matter physics, one that has the potential to exhibit novel electric, magnetic, and optical responses beyond those of conventional materials.