A New Route to the Realization of Topological Superconductivity
© The Physical Society of Japan
This article is on
Supercurrent-Induced Weyl Superconductivity
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 91, 074703 (2022).
We theoretically suggest that topological Weyl superconductivity can be realized by applying a supercurrent to noncentrosymmetric line-nodal superconductors with spin–orbit coupling.
Superconductivity is a phenomenon observed in certain metals and alloys where electrical resistance vanishes at low temperatures. This property is utilized in superconducting magnets, which are currently used in applications such as MRI machines and maglev railway systems. Superconductivity is considered to originate due to the formation of Cooper pairs of electrons. Cooper pairs can have various shapes (symmetries) depending on the materials. Although the superconductors that are currently used in practical applications have isotropic s-wave symmetry, anisotropic superconductivity has attracted considerable attention in recent studies. For example, high-Tc cuprate superconductors are known to be anisotropic d-wave superconductors hosting line nodes.
Topological superconductivity, which is a kind of anisotropic superconductivity, has been energetically studied for over a decade. Topological superconductors have special surface states called Majorana states, which are theoretically considered to be applicable to quantum computing. However, few superconductors have been experimentally confirmed to possess the topological property so far. Therefore, further research is needed to explore setups that can realize the topological superconductivity.
In this paper, we theoretically demonstrate the usefulness of a supercurrent for controlling the quantum states in superconductors. We introduce a three-dimensional tight-binding model of a tetragonal superconductor in a D+p-wave pairing state with a finite center-of-mass momentum. The results show that topological Weyl superconductivity can be realized by applying an infinitesimal supercurrent to the noncentrosymmetric spin–orbit-coupled superconductors hosting line nodes.
The Weyl superconductivity has point nodes (Weyl points) that are protected by a topological monopole charge. Ordinarily, the structure of the superconducting nodes does not vary greatly since this property is inherent in each superconductor. Nevertheless, the above result indicates that the line-nodal to point-nodal transition occurs due to the cooperation between the applied supercurrent and the spin–orbit coupling arising from the inversion symmetry breaking. This transition drastically changes the topology of the wavefunction in the superconductor. Indeed, the point nodes are Weyl nodes characterized by the monopole charge, and surface arc states connecting the Weyl nodes appear. We also propose CeRhSi3 and CeIrSi3 as candidate superconductors for the supercurrent-induced Weyl superconductivity.
This study proposes the use of supercurrent as a possible method to realize topological superconductivity, which could potentially lead to further developments, such as quantum computing and some electronics/spintronics devices, using the surface states obtained by the controlling method.
(written by S. Sumita on behalf of all authors.)
Supercurrent-Induced Weyl Superconductivity
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 91, 074703 (2022).
Share this topic
Fields
Related Articles
-
The Mysterious Superconductivity of Sr2RuO4
Superconductivity
2024-8-22
Researchers review the recent advancements made towards solving the mysteries of the unconventional superconductivity of Sr2RuO4, analyzing recent experiments and theoretical models and proposing approaches to resolve current challenges.
-
Discovery of Unconventional Pressure-Induced Superconductivity in CrAs
Superconductivity
Electronic transport in condensed matter
2024-8-13
A new study has discovered pressure-induced superconductivity in the helimagnet CrAs, originating in the vicinity of the helimagnetic ordering, representing the first example of superconductivity in Cr-based magnetic systems.
-
Antiferromagnetism Induces Dissipationless Transverse Conductivity
Electronic transport in condensed matter
Magnetic properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
2024-7-24
An investigation using high-quality NbMnP crystals demonstrates that the anomalous Hall conductivity arising from antiferromagnetism is dissipationless, as expected from the intrinsic mechanism.
-
Microscopic Exploration of Electronic States in Nickelate Superconductors
Magnetic properties in condensed matter
Superconductivity
2024-5-31
The multilayered nickelates, La3Ni2O7 and La4Ni3O10 , were investigated using nuclear magnetic resonance (NMR) at ambient pressure. Metallic electronic states under the density wave order were observed microscopically for both compounds.
-
Single-Crystal Growth of a Cuprate Superconductor with the Highest Critical Temperature
Superconductivity
2024-5-20
Millimeter-sized single crystals of a trilayer cuprate superconductor (Hg,Re)Ba2Ca2Cu3O8+δ that exhibits the highest superconducting transition temperature under ambient pressure, were grown reproducibly and safely.