Spin Transport in a TwoDimensional Tilted Dirac Electron System
© The Physical Society of Japan
This article is on
Anomalous Spin Transport Properties of Gapped Dirac Electrons with Tilting
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 91, 023708 (2022).
We propose that spin current in an organic conductor, α(BETS)_{2}I_{3}, is an appropriate physical quantity to detect the topological nature of the material whose electrons obey a quasitwodimensional Dirac equation.
In quantum mechanics, electrons are described by wave forms, and thus, their wave functions are characterized by wave numbers in the Fourier space. Recently, the topological nature of the wave functions in the Fourier space (that is, momentum space) has been confirmed to provide various peculiar properties to materials, which are called “topological materials.” However, extracting the topological nature as an observable quantity in a bulk material is difficult. In this paper, we propose that spin current in an organic conductor is an appropriate physical quantity to detect the topological property of the material.
The organic conductors considered in this study are layered materials composed of relatively large molecules, and the electrons can move around hopping on various molecules forming a quasitwodimensional electron system. Material parameters such as the lattice constant, kinetic energy of electrons, and interaction between particles can be rather easily controlled by pressure or by substituting molecules with slightly different molecules. Consequently, organic conductors demonstrate various interesting properties as shown in a wide variety of phase diagrams of parameters. Recently, related to the topological nature, a certain class of organic conductors whose electrons obey the quasitwodimensional Dirac equation has been focused on. The Dirac equation was proposed by Dirac in 1928, which combined the newly born field of quantum mechanics and relativity. It predicts positrons occupying the vacuum. However, an electron–positron pair creation requires very high energy. In an organic conductor, α(BETS)_{2}I_{3}, the firstprinciples band calculation shows that electrons inside obey an equation similar to the Dirac equation, but with a very small energy gap. Therefore, in this material, the corresponding electron–positron (called hole in solids) pair creation requires considerably less energy than that for the original electron–positron pair creation. It can be created using thermal energy even at room temperatures.
Theoretically, the twodimensional Dirac electrons have been shown to have very peculiar topological properties. However, the conventional physical quantities are often written as an integral over the momentum space. Consequently, the topological nature of the Dirac electrons represented by Berry curvature vanishes after integration because the Berry curvature has two oppositesign contributions at the two distinct Dirac points in the momentum space. In this study, we noticed that this cancellation can be avoided by considering spin current, and the topological nature of the Dirac electrons in α(BETS)_{2}I_{3} can be detected in the spin current that can be measured using recent experimental techniques. More explicitly, we calculated the spin Hall conductivity and spin conductivity in a magnetic field based on a linear response theory.
(written by Masao Ogata on behalf of all authors)
Anomalous Spin Transport Properties of Gapped Dirac Electrons with Tilting
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 91, 023708 (2022).
Share this topic
Fields
Related Articles

High Magnetic Field as a Tool for Discovery in Condensed Matter Physics
Magnetic properties in condensed matter
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
Structure and mechanical and thermal properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Measurement, instrumentation, and techniques
20221213
The Journal of the Physical Society of Japan highlights in this special topic recent advances in modern physics that have been realized with the generation of pulsed high magnetic fields.

Strange Metal Behavior Potentially Associated to Hidden Electronic Nematicity
Superconductivity
Electronic transport in condensed matter
20221110
Ironbased superconductor, Ba_{1x}Rb_{x}Fe_{2}As_{2}, exhibits “strange metal” behavior—linear dependence of resistivity on temperature. It seems that hidden electronic nematic fluctuations play a greater role than the wellknown antiferromagnetic fluctuations.

Thermoelectric Response in Strongly Disordered Systems
Electronic transport in condensed matter
2022117
Based on the Kubo–Luttinger linear response theory, we discovered that the lowT Seebeck coefficient for Mott variablerange hopping in a ddimensional system varies as S ∝ T^{d}^{/(d+1)}, which is different from the conventional S ∝ T^{(}^{d}^{−1)/(}^{d}^{+1)}. In addition, the experimental data for S of CuCrTiS_{4} at low T are in excellent agreement with our prediction S ∝ T^{3/4} (d = 3).

SpinOrbit Coupled Electrons on Kagome Lattice Give Rise to Various Magnetic Orderings
Electronic structure and electrical properties of surfaces and nanostructures
2022810
Diverse magnetic orderings are found to be produced by spinorbit coupled electrons on the kagome lattice. This finding provides a unified guiding principle for the design of magnetic topological materials.

A New Route to the Realization of Topological Superconductivity
Superconductivity
Electronic structure and electrical properties of surfaces and nanostructures
202281
We theoretically suggest that topological Weyl superconductivity can be realized by applying a supercurrent to noncentrosymmetric linenodal superconductors with spin–orbit coupling.