Violation of FluctuationDissipation Theorem Results in Robustness of Fluctuation Against Localization
© The Physical Society of Japan
This article is on
Robustness of Equilibrium OffDiagonal Current Fluctuation against Localization of Electron States in Macroscopic TwoDimensional Systems
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 91, 024004 (2022).
We study equilibrium current fluctuations in systems without timereversal symmetry, violating the fluctuationdissipation theorem. Notably, the offdiagonal fluctuation is insensitive to system imperfections in contrast to other fluctuations and conductivity.
The fluctuationdissipation theorem (FDT) claims that the current fluctuation in a macroscopic equilibrium system is equal to the product of the temperature and electrical conductivity. This “theorem” was proved for classical systems for all components of fluctuations including offdiagonal fluctuations, namely crosstime correlations between currents flowing in different directions.
However, the validity of the FDT in quantum systems was questioned, because disturbances by quantum measurement often play a crucial role, which was ignored in the proof of the FDT for classical systems. Recently, this longstanding question was formally solved, and the FDT was shown to be violated even when the fluctuation is measured in a way that simulates the classical ideal measurement as closely as possible. However, this formal solution neither gave concrete systems that exhibit the FDT violation nor estimated the magnitude of violation.
We propose a twodimensional electron system in a magnetic field as a real physical system in which the FDT is violated. We clarify the conditions for large violations and show that the magnitude of violation is macroscopically large. In fact, the FDT for the offdiagonal component is significantly violated in a strong magnetic field at low temperatures, whereas the FDT for the diagonal component holds for any values of the parameters. In the standard setup used in the quantum Hall effect experiments, the offdiagonal current fluctuation is several tens of times larger than the product of temperature and Hall conductivity (offdiagonal conductivity).
Such a large violation implies novel properties of offdiagonal current fluctuations that are yet to be studied. Localized states of electrons contribute to the offdiagonal current fluctuation to the same extent as extended states, and hence, the offdiagonal fluctuation is insensitive to system imperfections. This is in sharp contrast to the Hall conductivity that is very sensitive to the imperfections because only extended states contribute. Moreover, as an application of this finding, we propose a new method for estimating the electron number density by measuring the offdiagonal fluctuation. Because fluctuations are a cause of error and noise, our results are expected to provide fundamental design guidelines for applications.
(Written by K. Kubo, K. Asano, and A. Shimizu)
Robustness of Equilibrium OffDiagonal Current Fluctuation against Localization of Electron States in Macroscopic TwoDimensional Systems
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 91, 024004 (2022).
Share this topic
Fields
Related Articles

NetPattern of Muskmelon Rind Favors a Common Mathematical Law
Crossdisciplinary physics and related areas of science and technology
Statistical physics and thermodynamics
2023112
The surface of muskmelon is covered with a fine meshlike netpattern. The geometric features of the fine mesh appear unique for each individual, but hide an unexpected mathematical rule.

High Magnetic Field as a Tool for Discovery in Condensed Matter Physics
Magnetic properties in condensed matter
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
Structure and mechanical and thermal properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Measurement, instrumentation, and techniques
20221213
The Journal of the Physical Society of Japan highlights in this special topic recent advances in modern physics that have been realized with the generation of pulsed high magnetic fields.

Strange Metal Behavior Potentially Associated to Hidden Electronic Nematicity
Superconductivity
Electronic transport in condensed matter
20221110
Ironbased superconductor, Ba_{1x}Rb_{x}Fe_{2}As_{2}, exhibits “strange metal” behavior—linear dependence of resistivity on temperature. It seems that hidden electronic nematic fluctuations play a greater role than the wellknown antiferromagnetic fluctuations.

Thermoelectric Response in Strongly Disordered Systems
Electronic transport in condensed matter
2022117
Based on the Kubo–Luttinger linear response theory, we discovered that the lowT Seebeck coefficient for Mott variablerange hopping in a ddimensional system varies as S ∝ T^{d}^{/(d+1)}, which is different from the conventional S ∝ T^{(}^{d}^{−1)/(}^{d}^{+1)}. In addition, the experimental data for S of CuCrTiS_{4} at low T are in excellent agreement with our prediction S ∝ T^{3/4} (d = 3).

SpinOrbit Coupled Electrons on Kagome Lattice Give Rise to Various Magnetic Orderings
Electronic structure and electrical properties of surfaces and nanostructures
2022810
Diverse magnetic orderings are found to be produced by spinorbit coupled electrons on the kagome lattice. This finding provides a unified guiding principle for the design of magnetic topological materials.