Shedding Light on Nonreciprocal Directional Dichroism at High Magnetic Fields in a Multiferroic Material
© The Physical Society of Japan
This article is on
Nonreciprocal Directional Dichroism in a Magnetic-Field-Induced Ferroelectric Phase of Pb(TiO)Cu4(PO4)4
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 90, 123701 (2021).
Large optical nonreciprocal directional dichroism, coupled with an antiferromagnetic order parameter, is observed in a high magnetic field via magneto-optical spectroscopy combined with a pulse magnet technique.

When a light beam propagates in a crystal that is asymmetric with respect to both space inversion and time reversal, absorption coefficients between two-counter propagating light beams can be different. This nonreciprocal optical phenomenon is called directional dichroism, which has been intensively studied on the so-called multiferroic materials with broken space-inversion and time-reversal symmetries, in broad wavelength regions ranging from microwave, terahertz, visible, to x-ray. The directional dichroism can appear not only in ferromagnets but also in antiferromagnets when the symmetry requirement is fulfilled. Therefore, the directional dichroism can be employed as a unique working principle of magneto-optical devices based on antiferromagnets and as a useful probe of antiferromagnets. However, the magnitude of previously reported directional dichroism in near-infrared-to-visible (NIR-VIS) region is small, typically about 1% or less in the nonreciprocal to reciprocal components, except for some specific materials. Few reports on antiferromagnets make use of directional dichroism.
In this study, the authors investigated the directional dichroism of a multiferroic material Pb(TiO)Cu4(PO4)4 in high magnetic fields up to 49 tesla via magneto-optical spectroscopy in the NIR-VIS range combined with a pulse magnet technique. Measuring the optical absorption coefficient for counter-propagating light beams, directional dichroism signals were successfully observed in a magnetic-field-induced phase (16 to 45 tesla at a temperature of 2 K). The relative magnitude of the observed signals is significantly large, exceeding 13% at a photon energy of approximately 1.4 eV. Moreover, the magnetic-field dependence of the directional dichroism signals resembles that of a theoretically calculated antiferromagnetic order parameter of the field-induced phase. This strongly suggests that the nonreciprocal directional dichroism (NDD) in the field-induced phase originates from the antiferromagnetic order parameter.
In general, probing an antiferromagnetic order parameter is considerably difficult compared to probing a ferromagnetic order parameter, namely, macroscopic magnetization. There are few experimental probes of an antiferromagnetic order parameter in a high magnetic field regime which is hard to access by typical superconducting magnets. Therefore, the present work not only demonstrates a large NDD but also suggests that the measurement of NDD with a pulse magnet technique provides a unique way of investigating an antiferromagnetic order parameter in a high-field regime.
(Witten by K. Kimura on behalf of all authors)
Nonreciprocal Directional Dichroism in a Magnetic-Field-Induced Ferroelectric Phase of Pb(TiO)Cu4(PO4)4
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 90, 123701 (2021).
Share this topic
Fields
Related Articles
-
Non-Trivial Superconductivity in the Semimetal EuAuBi
Superconductivity
Magnetic properties in condensed matter
2023-2-22
Magnetic order and superconductivity coexist in a noncentrosymmetric topological semimetal, EuAuBi. EuAuBi exhibits a large, anisotropic critical field with Rashba spin–orbit coupling, which can help develop superconducting spintronic materials.
-
Hidden Magnetoelectric Phase Transition by Emergent Staggered Magnetic Field
Magnetic properties in condensed matter
2023-2-17
Emergent staggered magnetic fields induce phase transition in the multiferroic material Ba2FeSi2O7.
This study established a design principle utilizing emergent staggered magnetic fields to obtain an enhanced physical response. -
Thickness-Dependent Oscillation Behavior of Magnetic Phase Transitions in Pt Ultrathin Films with Small Orbital Moment
Magnetic properties in condensed matter
2023-1-6
Ferromagnetism in nano-Pt films originates from the quantum-confinement effect that depends on film thickness. Studies of the electronic states of nano-Pt will aid in developing methods for efficiently utilizing its large spin-orbit coupling.
-
High Magnetic Field as a Tool for Discovery in Condensed Matter Physics
Magnetic properties in condensed matter
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
Structure and mechanical and thermal properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Measurement, instrumentation, and techniques
2022-12-13
The Journal of the Physical Society of Japan highlights in this special topic recent advances in modern physics that have been realized with the generation of pulsed high magnetic fields.
-
Terahertz Radiation as a Tool for Exploring Material Properties
Dielectric, optical, and other properties in condensed matter
2022-12-8
Researchers from Japan highlight, in a recent review, the range of material properties that can be and have been studied using the phenomenon of femtosecond laser-induced terahertz radiation emission.