Violation of Fluctuation-Dissipation Theorem Results in Robustness of Fluctuation Against Localization
© The Physical Society of Japan
This article is on
Robustness of Equilibrium Off-Diagonal Current Fluctuation against Localization of Electron States in Macroscopic Two-Dimensional Systems
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
91,
024004
(2022)
.
We study equilibrium current fluctuations in systems without time-reversal symmetry, violating the fluctuation-dissipation theorem. Notably, the off-diagonal fluctuation is insensitive to system imperfections in contrast to other fluctuations and conductivity.
The fluctuation-dissipation theorem (FDT) claims that the current fluctuation in a macroscopic equilibrium system is equal to the product of the temperature and electrical conductivity. This “theorem” was proved for classical systems for all components of fluctuations including off-diagonal fluctuations, namely cross-time correlations between currents flowing in different directions.
However, the validity of the FDT in quantum systems was questioned, because disturbances by quantum measurement often play a crucial role, which was ignored in the proof of the FDT for classical systems. Recently, this long-standing question was formally solved, and the FDT was shown to be violated even when the fluctuation is measured in a way that simulates the classical ideal measurement as closely as possible. However, this formal solution neither gave concrete systems that exhibit the FDT violation nor estimated the magnitude of violation.
We propose a two-dimensional electron system in a magnetic field as a real physical system in which the FDT is violated. We clarify the conditions for large violations and show that the magnitude of violation is macroscopically large. In fact, the FDT for the off-diagonal component is significantly violated in a strong magnetic field at low temperatures, whereas the FDT for the diagonal component holds for any values of the parameters. In the standard setup used in the quantum Hall effect experiments, the off-diagonal current fluctuation is several tens of times larger than the product of temperature and Hall conductivity (off-diagonal conductivity).
Such a large violation implies novel properties of off-diagonal current fluctuations that are yet to be studied. Localized states of electrons contribute to the off-diagonal current fluctuation to the same extent as extended states, and hence, the off-diagonal fluctuation is insensitive to system imperfections. This is in sharp contrast to the Hall conductivity that is very sensitive to the imperfections because only extended states contribute. Moreover, as an application of this finding, we propose a new method for estimating the electron number density by measuring the off-diagonal fluctuation. Because fluctuations are a cause of error and noise, our results are expected to provide fundamental design guidelines for applications.
(Written by K. Kubo, K. Asano, and A. Shimizu)
Robustness of Equilibrium Off-Diagonal Current Fluctuation against Localization of Electron States in Macroscopic Two-Dimensional Systems
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
91,
024004
(2022)
.
Share this topic
Fields
Related Articles
-
Chiral Gauge Field and Topological Magnetoelectric Response in Fully Spin-Polarized Magnetic Weyl Semimetal Co3Sn2S2
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024-11-1
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co3Sn2S2, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.
-
A Neural Thermometer for Predicting Phase Transitions of Unknown Systems
Measurement, instrumentation, and techniques
Statistical physics and thermodynamics
2024-9-11
A novel convolutional neural network predicts phase transition temperatures from spin configurations without prior information about order parameters, paving the way for the discovery of new materials in condensed matter physics.
-
Discovery of Light-Induced Mirror Symmetry Breaking
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
2024-9-2
The authors discovered the light-induced mirror symmetry breaking, paving the way for controlling mirror symmetries via light and for realizing various phenomena utilizing the mirror symmetry breaking.
-
Discovery of Unconventional Pressure-Induced Superconductivity in CrAs
Electronic transport in condensed matter
Superconductivity
2024-8-13
A new study has discovered pressure-induced superconductivity in the helimagnet CrAs, originating in the vicinity of the helimagnetic ordering, representing the first example of superconductivity in Cr-based magnetic systems.
-
Antiferromagnetism Induces Dissipationless Transverse Conductivity
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024-7-24
An investigation using high-quality NbMnP crystals demonstrates that the anomalous Hall conductivity arising from antiferromagnetism is dissipationless, as expected from the intrinsic mechanism.