How Good is the Transition-State Theory?
© The Physical Society of Japan
This article is on
Transition-State Dynamics in Complex Quantum Systems
J. Phys. Soc. Jpn. 90, 114005 (2021).
For the first time, the main assumption of the transition-state theory for the decay of complex quantum systems across a potential barrier was realized using a microscopic many-body Hamiltonian.

The decay of quantum systems through a potential barrier is ubiquitous in many fields of physics and chemistry, occurring in electron conduction within devices and quantum dots as well as chemical reactions, and nuclear fission. The usual framework for describing the barrier crossing is the "transition-state" theory, which was invented long ago to investigate chemical reactions and nuclear fission. The main assumption of this theory is that the decay rate is entirely determined at the highest point of the barrier and does not depend on what occurs afterward. This remarkable theory has been part of reaction theory since the 1930s and has been used in disciplines as widely distinct as chemistry and nuclear physics. However, this theory has not been validated for the quantum mechanics of many interacting particles.
In this study, a model was proposed to study reactions in systems with many interacting particles. The model allowed us to test whether the assumptions of the transition state theory could be satisfied in a full quantum theory. The model contains two reservoirs of internal states connected to each other by additional barrier-top states, and the reservoir states were considered using random matrix theory.
For the first time, we demonstrated that a main assumption of the transition-state theory can be easily satisfied by a more detailed theory, that is, the overall decay rate going through the far-side reservoir is largely determined by the barrier region and internal properties of the reservoirs, and is insensitive to the individual decay rates of the states out of the far-side reservoir.
In a subsequent paper (K. Hagino and G.F. Bertsch, Phys. Rev. E104, L052104(2021)), we applied the same model to discuss the variation of the decay rates between states. There is a well-established theory known as the Porter-Thomas distribution that has been validated for many systems, including atomic spectra, chemical reaction spectra, and nuclei. Surprisingly, our transition-state model revealed that this distribution differed depending on how large the individual rates were. The new distribution followed a different random matrix model, namely the Gaussian Unitary Ensemble, proposed by Dyson in 1960.
(Written by K. Hagino on behalf of all authors)
Transition-State Dynamics in Complex Quantum Systems
J. Phys. Soc. Jpn. 90, 114005 (2021).
Share this topic
Fields
Related Articles
-
Net-Pattern of Muskmelon Rind Favors a Common Mathematical Law
Cross-disciplinary physics and related areas of science and technology
Statistical physics and thermodynamics
2023-1-12
The surface of muskmelon is covered with a fine mesh-like net-pattern. The geometric features of the fine mesh appear unique for each individual, but hide an unexpected mathematical rule.
-
Towards a Better Understanding of the Short-range Repulsive Nuclear Force
Nuclear physics
2022-11-21
In a new study, researchers provide an experimental estimate of the short-range repulsive nuclear force strength based on a high-statistics measurement of the differential cross-section for Σ+p scattering.
-
Tensor Networks Across Physics
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Statistical physics and thermodynamics
Magnetic properties in condensed matter
2022-6-7
Researchers from Japan provide the first comprehensive review of the historical development of tensor networks from a statistical mechanics viewpoint, with a focus on its theoretical background.
-
Towards Radionuclide Cancer Therapy with High Purity 177Lu from Enriched 176Yb Samples
Nuclear physics
Cross-disciplinary physics and related areas of science and technology
2022-6-3
A method was developed to estimate the isotopic compositions of enriched 176Yb sample required for producing radionuclide 177Lu used for cancer therapy, with high radionuclide purity in accelerators.
-
Violation of Fluctuation-Dissipation Theorem Results in Robustness of Fluctuation Against Localization
Statistical physics and thermodynamics
Electronic transport in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
2022-3-23
We study equilibrium current fluctuations in systems without time-reversal symmetry, violating the fluctuation-dissipation theorem. Notably, the off-diagonal fluctuation is insensitive to system imperfections in contrast to other fluctuations and conductivity.