Analyzing Photoinduced Phase Transitions in an Organic Salt Using Floquet Theory
© The Physical Society of Japan
This article is on
Floquet Theory of Photoinduced Topological Phase Transitions in the Organic Salt α-(BEDT-TTF)2I3 Irradiated with Elliptically Polarized Light
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 90, 104705 (2021).
Rich nonequilibrium phase diagrams, including photoinduced topological insulator phases, were theoretically predicted for an organic salt α-(BEDT-TTF)2I3 when irradiated by elliptically polarized light.

Research on photoinduced phase transitions has progressed recently accelerated because of the rapid development of laser technology. Irradiation by circularly polarized light was theoretically proven to induce a photoinduced topological phase transition to the Chern insulator phase in a tight-binding model on the honeycomb lattice via a special kind of band structure resembling those predicted by Haldane. According to this prediction, the possible emergence of the photoinduced topological phase in graphene has been explored, and an observation of photoinduced Hall currents in graphene was argued in this context.
Since these pioneering studies, photoinduced topological phase transitions have undergone extensive theoretical investigations. However, the further development of this growing research field requires proposals of novel target materials and theoretical predictions of interesting physical phenomena. In this study, we theoretically predicted the occurrence of photoinduced topological phase transitions and the emergence of the topologically nontrivial Chern insulator phase as a nonequilibrium steady state in the organic salt α-(BEDT-TTF)2I3 under irradiation with elliptically polarized light.
We constructed rich nonequilibrium phase diagrams in the plane of the x-axis and y-axis components of the amplitude of elliptically polarized light by calculating the band structures, Chern numbers, and Hall conductivity in a photodriven α-(BEDT-TTF)2I3 system using the Floquet theory. These include the Chern insulator phases, non-topological insulator phases, and semimetal phases. In addition, calculations of the Hall conductivity using the Floquet–Keldysh scheme predicted that the quantization of Hall conductivity can be observed in this nonequilibrium Chern insulator phase at low temperatures, just as it is observed in equilibrium Chern insulators. Furthermore, we revealed that the present photoinduced Chern insulator phase possesses another feature of the equilibrium Chern insulators, namely, the gapless state localized at the edges. The predicted quantized Hall conductivity and edge current owing to the predicted edge states in the photoinduced Chern insulator phase are expected to be observed in future experiments for α-(BEDT-TTF)2I3. Our results expand a range of target materials and contribute to the research on the optical manipulation of electronic states in matter.
(Written by M. Mochizuki on behalf of all authors)
Floquet Theory of Photoinduced Topological Phase Transitions in the Organic Salt α-(BEDT-TTF)2I3 Irradiated with Elliptically Polarized Light
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 90, 104705 (2021).
Share this topic
Fields
Related Articles
-
Angle-Resolved Photoelectron Spectroscopy Microscopy: A Tool to Accelerate Nanomaterials Research
Electronic structure and electrical properties of surfaces and nanostructures
Structure and mechanical and thermal properties in condensed matter
Cross-disciplinary physics and related areas of science and technology
2023-2-10
Researchers have published a practical guide on new uses of photoelectron microscopy combined with valence band dispersion analysis. They visualized several-micrometers-wide graphite facets and precisely characterized the band structure.
-
High Magnetic Field as a Tool for Discovery in Condensed Matter Physics
Magnetic properties in condensed matter
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
Structure and mechanical and thermal properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Measurement, instrumentation, and techniques
2022-12-13
The Journal of the Physical Society of Japan highlights in this special topic recent advances in modern physics that have been realized with the generation of pulsed high magnetic fields.
-
Terahertz Radiation as a Tool for Exploring Material Properties
Dielectric, optical, and other properties in condensed matter
2022-12-8
Researchers from Japan highlight, in a recent review, the range of material properties that can be and have been studied using the phenomenon of femtosecond laser-induced terahertz radiation emission.
-
Birefringence Imaging-Based Investigation of Stress-Induced Phase Transitions in SrTiO3
Dielectric, optical, and other properties in condensed matter
2022-10-27
The spatial distributions of ferroelectric and structural phase transitions in quantum paraelectric SrTiO3 under uniaxial stress were microscopically observed using birefringence imaging techniques.
-
Spin-Orbit Coupled Electrons on Kagome Lattice Give Rise to Various Magnetic Orderings
Electronic structure and electrical properties of surfaces and nanostructures
2022-8-10
Diverse magnetic orderings are found to be produced by spin-orbit coupled electrons on the kagome lattice. This finding provides a unified guiding principle for the design of magnetic topological materials.