Nanospace-confined Helium Shows Four-dimensional Quantum Phase Transition (QPT)
© The Physical Society of Japan
This article is on
Evidence for 4D XY Quantum Criticality in 4He Confined in Nanoporous Media at Finite Temperatures
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 90, 033601 (2021).
Helium confined in a nanoporous material shows a four dimensional superfluid transition. This is a unique example of four dimensional critical phenomenon caused by strong quantum fluctuation.
Evidence for 4D XY Quantum Criticality in 4He Confined in Nanoporous Media at Finite Temperatures
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 90, 033601 (2021).
Share this topic
Fields
Related Articles
-
What Determines Non-Newtonian Flow Behavior in Glass-Forming Liquids?
Cross-disciplinary physics and related areas of science and technology
Structure and mechanical and thermal properties in condensed matter
2023-3-20
Even minute structural changes can lead to significant reductions in the flow resistances of glass-forming liquids. Here, possible scenarios and predictions for two different classes of glass-forming liquids are provided.
-
Clockwise or Anticlockwise, That is the Question: Phonons with Angular Momentum in Chiral Crystals
Structure and mechanical and thermal properties in condensed matter
2023-3-7
Chiral crystals have lattice structures with no mirror or inversion symmetries.
A few basic questions about their unique phonon excitations with intrinsic angular momentum are answered. -
Angle-Resolved Photoelectron Spectroscopy Microscopy: A Tool to Accelerate Nanomaterials Research
Electronic structure and electrical properties of surfaces and nanostructures
Structure and mechanical and thermal properties in condensed matter
Cross-disciplinary physics and related areas of science and technology
2023-2-10
Researchers have published a practical guide on new uses of photoelectron microscopy combined with valence band dispersion analysis. They visualized several-micrometers-wide graphite facets and precisely characterized the band structure.
-
Powered by Machine Learning: Obtaining Spectral Conductivity and Chemical Potential of Thermoelectric Materials from Experimental Data
Structure and mechanical and thermal properties in condensed matter
2023-1-31
We propose a machine-learning method to obtain the fundamental physical quantity, namely, the spectral conductivity, from experimental data of thermoelectric coefficients. Our study introduces a new data-driven approach that reveals the underlying low-energy electronic states of high-performance thermoelectric materials.
-
Phonon Simulations and Its Applications
Structure and mechanical and thermal properties in condensed matter
2022-12-26
Computation of phonons using first principles has many applications for understanding crystal properties. This review provides an overview of the present capabilities of such simulations using finite displacement supercell approach.