How is Brownian Motion Affected by a Fluctuating Random Surface?
Department of Chemistry, Tokyo Metropolitan University
© The Physical Society of Japan
This article is on
Brownian Motion on a Fluctuating Random Geometry
J. Phys. Soc. Jpn. 89, 074001 (2020).
A researcher has developed a new theory to describe the Brownian motion of a small object that is confined in a fluctuating random surface.
Owing to the recent advances in high-precision imaging techniques, scientists can directly observe the Brownian motion of a protein molecule embedded in a biological membrane. This type of membrane typically consists of a thin lipid bilayer and can be regarded as a two-dimensional fluid sheet. Another important characteristic of a lipid membrane is its high flexibility. Thus, the membrane can exhibit large out-of-plane shape fluctuations, which can be experimentally measured [1].
What is the lateral diffusion behavior of proteins confined in such a highly fluctuating environment? Previous theories have predicted that the effective diffusion coefficient of a particle immersed in a fluctuating membrane is smaller than that in a flat membrane. On a fluctuating random membrane, a moving object needs to travel a larger distance between two points in a three-dimensional space because the trajectories are constrained on a rough surface rather than on a flat surface (Fig. 1). This is referred to as “geometrical contribution”.

Fig. 1. Image for Brownian motion of a particle confined in a fluctuating random surface.
Recently, Ohta revisited the problem of lateral diffusion on a random surface using a new theoretical approach [2]. In addition to the geometrical contribution mentioned above, Ohta reported a new “dynamical contribution”, originating from the velocity correlation of the fluctuating surface. The new dynamical contribution increases the effective diffusion coefficient, as opposed to the geometrical contribution.
What is then the overall effect on the lateral diffusion coefficient owing to these two contributions? According to the numerical estimate of the effective diffusion coefficient, its reduction compared to that of a flat surface is diminished. Nevertheless, the net reduction is still 20–30%, which should be considered for an experimental data analysis.
In recent years, numerous studies have been carried out to quantify the nonequilibrium properties of biological systems by measuring the fluctuations at different levels and scales [1]. The study by Ohta shows that the Brownian motion of a particle and surface fluctuations are coupled in a nontrivial specific manner. As the diffusion of molecules on cell membranes has a crucial role for information processing in living cells, this study is of fundamental importance for analyses of biological soft matter.
References
[1] H. Turlier, D. A. Fedosov, B. Audoly, T. Auth, N. S. Gov, C. Sykes, J.-F. Joanny, G. Gompper, and T. Betz, Nat. Phys. 12, 513 (2016).
[2] T. Ohta, J. Phys. Soc. Jpn. 89, 074001 (2020).
Brownian Motion on a Fluctuating Random Geometry
J. Phys. Soc. Jpn. 89, 074001 (2020).
Share this topic
Fields
Related Articles
-
What Determines Non-Newtonian Flow Behavior in Glass-Forming Liquids?
Cross-disciplinary physics and related areas of science and technology
Structure and mechanical and thermal properties in condensed matter
2023-3-20
Even minute structural changes can lead to significant reductions in the flow resistances of glass-forming liquids. Here, possible scenarios and predictions for two different classes of glass-forming liquids are provided.
-
Clockwise or Anticlockwise, That is the Question: Phonons with Angular Momentum in Chiral Crystals
Structure and mechanical and thermal properties in condensed matter
2023-3-7
Chiral crystals have lattice structures with no mirror or inversion symmetries.
A few basic questions about their unique phonon excitations with intrinsic angular momentum are answered. -
Angle-Resolved Photoelectron Spectroscopy Microscopy: A Tool to Accelerate Nanomaterials Research
Electronic structure and electrical properties of surfaces and nanostructures
Structure and mechanical and thermal properties in condensed matter
Cross-disciplinary physics and related areas of science and technology
2023-2-10
Researchers have published a practical guide on new uses of photoelectron microscopy combined with valence band dispersion analysis. They visualized several-micrometers-wide graphite facets and precisely characterized the band structure.
-
Powered by Machine Learning: Obtaining Spectral Conductivity and Chemical Potential of Thermoelectric Materials from Experimental Data
Structure and mechanical and thermal properties in condensed matter
2023-1-31
We propose a machine-learning method to obtain the fundamental physical quantity, namely, the spectral conductivity, from experimental data of thermoelectric coefficients. Our study introduces a new data-driven approach that reveals the underlying low-energy electronic states of high-performance thermoelectric materials.
-
Net-Pattern of Muskmelon Rind Favors a Common Mathematical Law
Cross-disciplinary physics and related areas of science and technology
Statistical physics and thermodynamics
2023-1-12
The surface of muskmelon is covered with a fine mesh-like net-pattern. The geometric features of the fine mesh appear unique for each individual, but hide an unexpected mathematical rule.