Solving Quantum Equations with Gauge Fields: How Explicit Integrators Based on a Bipartite Lattice and Affine Transformations Can Help
© The Physical Society of Japan
This article is on
Explicit Integrators Based on a Bipartite Lattice and a Pair of Affine Transformations to Solve Quantum Equations with Gauge Fields
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 89, 054006 (2020).
We proposed an explicit numerical integrator consisting of affine transformation pairs resulting from the checkerboard lattice for spatial discretization. It can efficiently solve time evolution equations that describe dynamical quantum phenomena under gauge fields, e.g., generation, motion, interaction of quantum vortices in superconductors or superfluids.
Explicit Integrators Based on a Bipartite Lattice and a Pair of Affine Transformations to Solve Quantum Equations with Gauge Fields
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 89, 054006 (2020).
Share this topic
Fields
Related Articles

A New Method for Finding Bound States in the Continuum
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Nuclear physics
2024101
This study presents a general theory for constructing potentials supporting bound states in the continuum, offering a method for identifying such states in real quantum systems.

The Mysterious Superconductivity of Sr_{2}RuO_{4}
Superconductivity
2024822
Researchers review the recent advancements made towards solving the mysteries of the unconventional superconductivity of Sr_{2}RuO_{4}, analyzing recent experiments and theoretical models and proposing approaches to resolve current challenges.

General QuasiJoint Probabilities on FiniteState Quantum Systems
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
2024815
This study investigates the properties of general quasijoint probability distributions in finitestate quantum systems, revealing the KirkwoodDirac distribution as among the most favorable. This highlights the importance of complex distributions in understanding quantum probability.

Discovery of Unconventional PressureInduced Superconductivity in CrAs
Superconductivity
Electronic transport in condensed matter
2024813
A new study has discovered pressureinduced superconductivity in the helimagnet CrAs, originating in the vicinity of the helimagnetic ordering, representing the first example of superconductivity in Crbased magnetic systems.

Microscopic Exploration of Electronic States in Nickelate Superconductors
Magnetic properties in condensed matter
Superconductivity
2024531
The multilayered nickelates, La_{3}Ni_{2}O_{7} and La_{4}Ni_{3}O_{10} , were investigated using nuclear magnetic resonance (NMR) at ambient pressure. Metallic electronic states under the density wave order were observed microscopically for both compounds.