A New Method for Probing Hidden Multipoles in Crystal Field Quartet Using Ultrasonic Waves
© The Physical Society of Japan
This article is on
Theory of Magnetoacoustic Resonance to Probe Multipole Effects Due to a Crystal Field Quartet
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
93,
114701
(2024)
.
A new method of acoustically driven resonance is proposed to unveil the multipole degrees of freedom of a crystal-field quartet and demonstrate the realization of spin acoustic control.
Magnetic atoms primarily exhibit the properties of magnetic dipoles. In addition to magnetic dipoles general, solid-state spins have electric quadrupoles and magnetic octupoles known as typical multipole degrees of freedom. Magnetic dipoles can be coupled to a magnetic field and are easily detectable. However, directly observing the characteristics of multipoles is challenging because of the practical limitations of external fields coupled with multipoles. Because a quadrupole can be coupled to strain fields induced by lattice deformations, we present a new magnetoacoustic resonance method for analyzing the multipoles of solid-state spins using an ultrasonic wave propagating on the surface layer of the lattice. Recent developments in acoustic measurements have increased the importance of fundamental theory for the direct observation of quadrupole characteristics using magnetoacoustic resonance.
In this study, we focus on the rich multipole physics of CeB6, which may have originated from a crystal-field quartet of the Ce atomic state. A method to directly analyze multipoles is desirable. Ce quadrupoles can be coupled to strain fields driven by ultrasonic waves, and CeB6 is a favorable candidate for testing our method. Using solely ultrasonic waves renders it difficult to realize high-frequency measurements, which are necessary in the case of CeB6, owing to technical limitations arising from the increase in frequency. This challenging problem can be solved by combining acoustic and optical measurements, i.e., using microwaves with ultrasonic waves simultaneously, because the microwave frequencies can be increased sufficiently for experiments under relatively high magnetic fields. This method is inspired by the analogy of two-photon absorption transition using electromagnetic waves with two different frequencies.
Our method of using quadrupoles coupled with ultrasonic waves may result in the use of acoustically operating solid-state spins as qubits for quantum computers and can be used in various applications of quantum information technology. Additionally, this innovation in acoustic control may complement conventional methods of optical control. Another important application is quantum sensing, such as biomagnetism microprobes with high resolution at the nanoscale.
(Written by Mikito Koga on behalf of all authors)
Theory of Magnetoacoustic Resonance to Probe Multipole Effects Due to a Crystal Field Quartet
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
93,
114701
(2024)
.
Share this topic
Fields
Related Articles
-
Towards Next Generation Magnetic Storage: Magnetic Skyrmions in EuPtSi
Magnetic properties in condensed matter
2024-12-10
This study explores the magnetic behavior of rare-earth magnet EuPtSi using single-crystal neutron diffraction, potentially revealing magnetic skyrmion lattice formation.
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.
-
Chiral Gauge Field and Topological Magnetoelectric Response in Fully Spin-Polarized Magnetic Weyl Semimetal Co3Sn2S2
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024-11-1
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co3Sn2S2, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.
-
Electricity Provides Cooling
Cross-disciplinary physics and related areas of science and technology
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2024-10-15
Electric cooling at low temperatures is successfully achieved using a ferroelectric ferromagnetic solid instead of refrigerant gases such as fluorocarbons. -
Pressure-Tuned Classical–Quantum Crossover in Magnetic Field-Induced Quantum Phase Transitions of a Triangular-Lattice Antiferromagnet
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Magnetic properties in condensed matter
2024-9-5
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.