Which is Moving?—Pinning Down the Origin of Fluctuations in Muon Spin Relaxation—
© The Physical Society of Japan
This article is on
Distinguishing Ion Dynamics from Muon diffusion in Muon Spin Relaxation
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
93,
044602
(2024)
.
The study demonstrated that we can distinguish between the diffusion motion of the muon itself and the motion of the surrounding ions in muon spin relaxation.
In the muon spin relaxation (µSR) measurements, the distribution (described by linewidth D) of internal magnetic field H(t) and its temporal fluctuations (with mean fluctuation rate n) can be observed by implanting spin-polarized muons into a material. However, distinguishing whether the fluctuations are caused by the diffusive motion of the muon itself or the motion of the ions around it, is difficult. In this study, by reviewing the strong collision model, which is an assumption used to describe spin relaxation, we observed that the difference in the cause of the fluctuation appeared as a difference in the spin relaxation function. The new model reproduces well the spin relaxation owing to the local rotational motion of cation molecules observed in hybrid perovskites; this opens the way to distinguish the cause of fluctuations solely from the µSR data.
When a muon exhibits jump-diffusion in a nonmagnetic material, the configuration of the nuclear magnetic moments around the muon changes simultaneously before and after the site change. The fluctuation of H(t) owing to these jumps is well approximated by the strong collision model [where the autocorrelation of H(t) is given by equation H(t)H(0)~D2exp(-nt)], and the time evolution of the muon spin polarization, Gz(t), is described by the dynamical Kubo–Toyabe (KT) relaxation function. However, if the H(t) fluctuations are due to the jump diffusion of ions, only a part of the ion configuration around the muon changes in one jump, and the strong collision model is not necessarily expected to be applicable.
Therefore, we performed Monte Carlo simulations for Gz(t) using a model in which the fluctuations of H(t) owing to ion motion were described by an Edwards–Anderson type autocorrelation function with the quasi-static and dynamic components of the autocorrelation separated by parameter Q [where H(t)H(0)~QD2exp(-nt) + (1-Q)D2], and Gz(t) was noted to deviate significantly from the KT function. To further verify this model, we compared the µSR spectra observed in the hybrid organic–inorganic perovskite FAPbI3 [FA refers to HC(NH2)2] with the simulation results. The least-squares curve fitting results showed excellent agreement with the model with Q = 0.947(3), yielding reasonable fluctuation frequencies for the dynamical component. This result opens the possibility of experimentally distinguishing between fluctuations owing to the dynamics of ions around muons and fluctuations owing to the self-diffusion of muons.
Written by T. U. Ito and R. Kadono
Distinguishing Ion Dynamics from Muon diffusion in Muon Spin Relaxation
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
93,
044602
(2024)
.
Share this topic
Fields
Related Articles
-
Unlocking Secrets of Novel Charge-Orbital States in Transition-Metal Compounds
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-6
A new Special Topics edition of the Journal of the Physical Society of Japan features articles exploring special transition-metal compounds that exhibit novel charge-orbital states.
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.
-
Imaging Atomic Displacement in BaTiO3 with Neutron Holography
Measurement, instrumentation, and techniques
Structure and mechanical and thermal properties in condensed matter
2024-11-7
Newly developed neutron holography was applied to ferroelectric BaTiO3 to evaluate oxygen displacement, providing important structural information for improving the ability of dielectric materials to store electricity.
-
Electricity Provides Cooling
Cross-disciplinary physics and related areas of science and technology
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2024-10-15
Electric cooling at low temperatures is successfully achieved using a ferroelectric ferromagnetic solid instead of refrigerant gases such as fluorocarbons. -
Pressure-Tuned Classical–Quantum Crossover in Magnetic Field-Induced Quantum Phase Transitions of a Triangular-Lattice Antiferromagnet
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Magnetic properties in condensed matter
2024-9-5
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.