Ultra Purification Unveils the Intrinsic Nature in Spin-Triplet Superconductor UTe2
© The Physical Society of Japan
This article is on
Large Reduction in the a-axis Knight Shift on UTe2 with Tc = 2.1 K
J. Phys. Soc. Jpn. 92, 063701 (2023).
Microscopic spin-susceptibility measurements in ultra-pure UTe2 samples reveal that superconducting symmetry is analogous to the superfluidity of the 3He B-phase and that U deficiency has a significant impact on superconducting properties.

Superconductivity is a coherent quantum-mechanical state formed by electron pairs. Superconducting order parameters can be described using combinations of spin and orbital states. Although there are no spin degrees of freedom in the spin-singlet superconducting state, unique properties such as multiple superconducting states and spin rotation of a superconducting pair are expected in the spin-triplet superconducting state, owing to the presence of spin degrees of freedom. However, almost all discovered superconductors belong to the spin-singlet superconductors, with only a few spin-triplet superconductors reported thus far.
In 2018, superconductivity in UTe2 was discovered. UTe2 was initially classified as a spin-triplet superconductor owing to similarities with U-based ferromagnetic superconductors with spin-triplet pairing. In fact, characteristic features of the spin-triplet superconductor, such as an extremely large upper critical field Hc2 and superconducting multiple phases, were observed in UTe2. In NMR measurements, our group obtained various results confirming the spin-triplet state.
In 2022, a significant improvement in sample quality was achieved by changing the synthesis method from chemical-vapor-transport to molten-salt flux method. The new samples showed an increase in Tc from 1.6 to 2.1 K. The residual specific heat coefficient at T → 0, which was approximately half of the normal-state value in the 1.6 K sample, was nearly zero in the 2.1 K sample, indicating the ultra-pure nature of the 2.1 K sample.
To elucidate the intrinsic superconducting symmetry of UTe2, we performed NMR measurements on the 2.1 K sample. Because of the Meissner effect, bulk magnetization measurements cannot be used to determine spin susceptibility in the superconducting state; hence, NMR measurements are the only technique used. The results of NMR measurements for magnetic fields along three crystal axes revealed that the spin susceptibility in the a axis, which did not decrease in the 1.6 K samples, decreased significantly in the 2.1 K samples. However, the spin susceptibility in the b and c axes remained approximately the same as that in the 1.6 K samples. The results in the 2.1 K sample suggest that the possible superconducting state is the spin-triplet Au state, which is the same pairing state as the superfluidity 3He B-phase. This superconducting state is a strong candidate for the topological superconductor, in which the Majorana surface state is anticipated.
Our findings highlight the importance of ultra-pure samples for investigating the essential behavior of superconductivity.
(written by H. Matsumura on behalf of all authors.)
Large Reduction in the a-axis Knight Shift on UTe2 with Tc = 2.1 K
J. Phys. Soc. Jpn. 92, 063701 (2023).
Share this topic
Fields
Related Articles
-
Antisymmetric Exchange Interaction Selects the Cycloidal Helicity: Observation by Resonant X-ray Diffraction
Magnetic properties in condensed matter
2023-9-5
The unique sense of rotation of the cycloidal magnetic order was clarified in noncentrosymmetric EuIrGe3 by using circularly polarized resonant x-ray diffraction.
-
Exploring Vortex Dynamics in a Multi-band Superconductor
Superconductivity
2023-8-22
We measured the microwave flux-flow Hall effect in FeSe, where the cancellation of holes and electrons was observed. This is a novel effect of multi-band superconductors.
-
Double Superconductivity in Nodal Line Material NaAlSi; Coexistence of Bulk and 2D Superconductivities
Superconductivity
Electronic structure and electrical properties of surfaces and nanostructures
2023-7-26
Unique diamagnetic torque signals are found in the nodal line material NaAlSi, which suggests the presence of double superconductivity; i.e., bulk superconductivity and 2D superconductivity on the crystal surface.
-
Self-Energy Singularity Explains High-Temperature Superconductivity in Cuprates
Superconductivity
Electron states in condensed matter
2023-7-18
A new review discusses the high-temperature superconductivity mechanisms in copper oxides, explaining the various phases observed in these materials based on a nonperturbative effect called self-energy singularity.
-
Fingerprint of Majorana Zero Modes through Nonlocal Measurements
Superconductivity
2023-5-23
The enhancement and robustness of the 2π periodic Aharonov-Bohm effect can serve as a nonlocal probe of Majorana zero modes in topological superconductors that are not restricted by fermion parity.