Hidden Magnetoelectric Phase Transition by Emergent Staggered Magnetic Field
© The Physical Society of Japan
This article is on
Magnetic-Field-Induced Antiferromagnetic–Antiferromagnetic Phase Transition in Quasi-Two-Dimensional Multiferroic Material Ba2FeSi2O7
J. Phys. Soc. Jpn. 92, 014701 (2022).
Emergent staggered magnetic fields induce phase transition in the multiferroic material Ba2FeSi2O7.
This study established a design principle utilizing emergent staggered magnetic fields to obtain an enhanced physical response.

Magnetic fields are among the most fundamental external fields for manipulating the physical property of magnetic materials. Uniform magnetic fields induce phase transitions to obtain a gain from Zeeman energy, resulting in a metamagnetism characterized by transitions from antiferromagnets (AFMs) to ferromagnets. However, staggered magnetic fields, whose directions are antiparallel between neighboring magnetic atoms, remain relatively unexplored. In contrast to uniform magnetic fields, staggered magnetic fields potentially induce a phase transition between two distinct AFM phases, which is expected to accompany a jump in staggered magnetization.
An interesting application of this new type of phase transition is its usage as a knob for controlling composite order parameters in multiferroics. Multiferroics are a group of materials wherein multiple degrees of freedom, such as spin, charge, and lattice, are mutually coupled. They are considered a promising platform for realizing cost-effective next-generation devices. In multiferroics, unconventional spin degrees of freedom are known to be relevant to describe their unusual behavior. Certain types of staggered magnetic moments are considered to be responsible for ferroelectricity. However, the direct application of a staggered magnetic field in an experimental setup is challenging; this hinders the development of their functionality.
In this study, we observed a magnetic field-induced phase transition from a zero-field AFM phase to another AFM phase in the multiferroic material Ba2FeSi2O7. Consequently, the hidden role of the emergent staggered magnetic field was identified. A key ingredient is the Dzyaloshinskii–Moriya (DM) interaction of relativistic spin-orbit coupling origin, which exists in non-centrosymmetric materials, and facilitates effective conversion of the uniform magnetic field into a staggered magnetic field.
We measured the magnetic field dependence of magnetization and electric polarization of a single crystal Ba2FeSi2O7 and observed a phase transition accompanying electric polarization changes. Using a newly established spin model, the experimental observation was reproduced through mean-field numerical simulations. The simulation results indicate the jump in staggered magnetization at the phase transition, thus validating the proposed scenario. In other words, the phase transition is induced by the emergent staggered magnetic field converted from the applied uniform magnetic field through DM interaction. The fragile nature of the zero-field AFM structure against the emergent staggered magnetic field originates from the low dimensionality of this material, which enables the competition between exchange interaction and relatively weak DM interaction. Thus, our study demonstrated the utilization of the field-induced emergent staggered field to manipulate AFM phases and a design principle of materials.
(written by Y. Watanabe on behalf of all the authors.)
Magnetic-Field-Induced Antiferromagnetic–Antiferromagnetic Phase Transition in Quasi-Two-Dimensional Multiferroic Material Ba2FeSi2O7
J. Phys. Soc. Jpn. 92, 014701 (2022).
Share this topic
Fields
Related Articles
-
Non-Trivial Superconductivity in the Semimetal EuAuBi
Superconductivity
Magnetic properties in condensed matter
2023-2-22
Magnetic order and superconductivity coexist in a noncentrosymmetric topological semimetal, EuAuBi. EuAuBi exhibits a large, anisotropic critical field with Rashba spin–orbit coupling, which can help develop superconducting spintronic materials.
-
Thickness-Dependent Oscillation Behavior of Magnetic Phase Transitions in Pt Ultrathin Films with Small Orbital Moment
Magnetic properties in condensed matter
2023-1-6
Ferromagnetism in nano-Pt films originates from the quantum-confinement effect that depends on film thickness. Studies of the electronic states of nano-Pt will aid in developing methods for efficiently utilizing its large spin-orbit coupling.
-
High Magnetic Field as a Tool for Discovery in Condensed Matter Physics
Magnetic properties in condensed matter
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
Structure and mechanical and thermal properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Measurement, instrumentation, and techniques
2022-12-13
The Journal of the Physical Society of Japan highlights in this special topic recent advances in modern physics that have been realized with the generation of pulsed high magnetic fields.
-
Understanding the Obscure Antiferromagnetism in α-Mn by Nuclear Magnetic Resonance
Magnetic properties in condensed matter
2022-11-29
Although Mn is an elementary metal, the antiferromagnetic state of α-Mn is still obscure. Our NMR study on high-quality α-Mn provides new insights into the symmetry of its antiferromagnetism.
-
Origin of Metamagnetic Transition (MMT) in the Spin-Triplet Superconductivity in UTe2
Superconductivity
Magnetic properties in condensed matter
2022-7-4
State-of-the-art magnetostriction measurements in a pulsed-magnetic field reveal the origin of a metamagnetic transition of spin-triplet superconductor UTe2. We propose that the uranium valence fluctuation plays a crucial role in its metamagnetic and superconducting transitions.