Towards Radionuclide Cancer Therapy with High Purity 177Lu from Enriched 176Yb Samples
© The Physical Society of Japan
This article is on
Estimated Isotopic Compositions of Yb in Enriched 176Yb for Producing 177Lu with High Radionuclide Purity by 176Yb(d,x)177Lu
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 91, 044201 (2022).
A method was developed to estimate the isotopic compositions of enriched 176Yb sample required for producing radionuclide 177Lu used for cancer therapy, with high radionuclide purity in accelerators.

Radiopharmaceuticals labelled with radionuclides of high radionuclide purity in nuclear medicine that emit gamma-rays and beta-rays have been used for diagnosis imaging of diseases and therapy in cancer treatments, respectively. Internal radiation therapy is performed using radiation doses to kill cancer cells and shrink tumors. A personalized medicine treatment that combines diagnosis and therapy has become important for a patient, in which information about the patient’s genes is used. A personalized medicine treatment is performed using radionuclide pairs appropriate for both diagnosis and therapy in the same patients, requiring us to develop a variety of radionuclides.
Recently, significant interest has arisen in 177Lu, currently produced in reactors, owing to successful treatments in patients with neuroendocrine tumors, which appear everywhere in the body, using 177Lu-labelled radiopharmaceuticals; this success encourages further study of 177Lu production in accelerators toward widespread medical applications of 177Lu. Indeed, the excitation functions of the 176Yb(d,p)177Yb®177Lu and 176Yb(d,n)177Lu (hereafter 176Yb(d,x)177Lu) reaction have been measured using a natural Yb (natYb) sample but not an enriched 176Yb sample. Hence, radionuclide purity of 177Lu radionuclide is low because of many impurity radionuclides of Lu arising from seven stable isotopes, 168Yb-176Yb, present in natYb. Even with the use of highly enriched samples, no radionuclide sample is 100% pure and all contain some impurity radionuclides resulting from the production process by nuclear reactions.
A method was developed to estimate the isotopic compositions of enriched 176Yb samples required to produce 177Lu with a high radionuclide purity using the 176Yb(d,x)177Lu reaction. First, the estimation was done by deriving excitation functions of individual reactions for producing all aforementioned impurity Lu radionuclides that were obtained by fitting the measured excitation functions of the natYb(d,x)Lu reactions with an appropriate function form (see Fig. 1). Second, the yields of all Lu radionuclides that were produced by irradiating enriched 176Yb samples with several isotopic compositions of Yb present in enriched 176Yb samples with deuteron beams were estimated. The 177Lu radionuclide purity for the 99.90% and 97.60% enriched 176Yb samples at 2.5 days after the end of irradiation was estimated to be high, that is, > 98% and > 99% at the deuteron energy of 20 and 15 MeV, respectively. The resultant radionuclide 177Lu would play an important role in promoting its widespread use for a variety of therapeutic applications. This finding to utilize measured excitation functions of nuclear reactions with natural samples would play an important role in producing a variety of medical radionuclides with a high radionuclide purity.
(written by Yasuki Nagai on behalf of all authors)

Fig.1.
(Left) Measured and fitted excitation functions of the 176Yb(d,2n)176mLu reaction. (Middle) Measured excitation functions of the 176Yb(d,p)177g+mYb (filled squares), 176Yb(d,n)177Lu (filled triangle), and 176Yb(d,x)177Lu (cumulative. filled circles) reactions. The fitted excitation functions of the reactions are shown by the solid, dotted, and dashed lines.
(Right) Measured (filled circles) and fitted (solid, dotted, and dashed lines) excitation function of the natYb(d,x)174g+mLu reaction.
Estimated Isotopic Compositions of Yb in Enriched 176Yb for Producing 177Lu with High Radionuclide Purity by 176Yb(d,x)177Lu
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn. 91, 044201 (2022).
Share this topic
Fields
Related Articles
-
Understanding Relaxor Ferroelectrics with Simple Landau Theory
Dielectric, optical, and other properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
Cross-disciplinary physics and related areas of science and technology
2022-5-23
Third-order nonlinear dielectric susceptibility is measured in the paraelectric phase of Pb(Sc1/2Ta1/2)O3. The linear and nonlinear dielectric susceptibility results can be consistently explained based on the Landau-type free-energy density.
-
Economic Irreversibility: The Universal Guiding Principle of Infection Control
Statistical physics and thermodynamics
Cross-disciplinary physics and related areas of science and technology
2022-3-1
It is preferable to avoid lockdowns, as lockdowns at seriously spread phases are very expensive. It would be economically better to utilize less intense countermeasures as early as possible to avoid lockdowns in later phases.
-
New Systematic Analysis Method of Identifying Microscopic Essential Couplings
Electronic transport in condensed matter
Dielectric, optical, and other properties in condensed matter
Cross-disciplinary physics and related areas of science and technology
2022-1-31
We propose a systematic method of identifying essential model parameters for nonlinear response tensors. The analysis results reveal fundamental couplings in nontrivial responses and promote further development of multiferroic responses.
-
How Good is the Transition-State Theory?
Statistical physics and thermodynamics
Nuclear physics
2021-11-30
For the first time, the main assumption of the transition-state theory for the decay of complex quantum systems across a potential barrier was realized using a microscopic many-body Hamiltonian.
-
Estimating Beta Decay Rates Better for Exotic Nuclei
Nuclear physics
2021-10-1
Physicists from Japan demonstrate an improved estimation of the beta decay rate in heavy nuclei by considering next-to-leading-order approximation for the electron wave function distorted by the Coulomb potential.