Tensor Networks Across Physics
© The Physical Society of Japan
This article is on
Developments in the Tensor Network — from Statistical Mechanics to Quantum Entanglement
J. Phys. Soc. Jpn.
91,
062001
(2022)
.
Researchers from Japan provide the first comprehensive review of the historical development of tensor networks from a statistical mechanics viewpoint, with a focus on its theoretical background.
Tensor networks (or TNs) have played a central role in furthering our understanding of classical and quantum many-body systems. TNs not only provide a practical tool for quantum simulations but form a key building block of various fields in theoretical physics. Given the importance of theoretical backgrounds of various TNs, a team of researchers from Japan set out to provide a unified description of the developments in TNs from the statistical mechanics perspective.
They began by looking at the famous 2D Ising model. They showed that using a vertex model representation with 4-leg tensors and a row-to-row transfer matrix T leads very naturally to a variational state in the matrix product state (or MPS) form, which reflects the transfer matrix structure of the square lattice. Further consideration of the variation of the largest eigenvalue of T showed the equivalence of this variation with the variational principle of the MPS for the 1D quantum system. Notably, this consideration also led to the corner transfer matrix (or CTM).
Next, the team highlighted that a systematic formulation of recursive relations for CTMs leads to a real space renormalization group algorithm known as corner transfer matrix renormalization group. In this, the variational principle for the partition function is reformulated for the CTM. The researchers then pointed out the difficulties of recasting this CTM formulation to the 1D quantum system and how they can be bypassed in the formulation of infinite time-evolved block decimation and density matrix renormalization group.
They also highlighted the higher dimension generalization of MPS, such as tensor product states or projected entangled pair states. They then moved onto tensor renormalization groups or TRGs, focusing on their fixed point structures. Lastly, they discussed how tensor network renormalization can help overcome the difficulties associated with TRGs for critical systems, and the multi-scale entanglement renormalization ansatz.
Overall, an understanding of the fundamental background of TN approaches could lead to the development of reliable TN simulations and accelerate the development of quantum technologies, such as quantum computers.
Developments in the Tensor Network — from Statistical Mechanics to Quantum Entanglement
J. Phys. Soc. Jpn.
91,
062001
(2022)
.
Share this topic
Fields
Related Articles
-
Overcoming Phase Transitions for Faster Quantum Annealing
Statistical physics and thermodynamics
2025-3-27
This study presents an innovative method to address the problem of phase transitions in quantum annealing, resulting in an exponential speedup of the process.
-
Exploring the Vibrant Interplay of Machine Learning and Physics
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Elementary particles, fields, and strings
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Statistical physics and thermodynamics
Superconductivity
2025-3-13
This Journal of the Physical Society of Japan Special Topics edition explores how physics and machine learning complement each other and can solve unresolved problems in physics.
-
Understanding Pressure-Induced Superconductivity in CrAs and MnP
Magnetic properties in condensed matter
2025-3-10
This study reviews existing research on the pressure-induced variation of magnetic properties of transition metal mono-pnictides like CrAS, MnP, and others, aiming to understand the unconventional superconductivity observed in CrAs and MnP.
-
Traffic Signal Optimization using Quantum Annealing
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
2025-2-25
This paper introduces a QUBO model for traffic signal optimization on real-world maps. Using D-Wave quantum annealing and SUMO simulations, the model reduces vehicle waiting times, but underperforms classical solvers.
-
Symmetry and AI: Building the Future of Physics Simulations
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
2025-2-18
Generative artificial intelligence (AI) has gained considerable attention in scientific fields. By embedding physical symmetry into AI before training, we created a faster and lighter model. Scaling improves the accuracy and unlocks the potential of physics research and applications.