Tensor Networks Across Physics
© The Physical Society of Japan
This article is on
Developments in the Tensor Network — from Statistical Mechanics to Quantum Entanglement
J. Phys. Soc. Jpn.
91,
062001
(2022)
.
Researchers from Japan provide the first comprehensive review of the historical development of tensor networks from a statistical mechanics viewpoint, with a focus on its theoretical background.
Tensor networks (or TNs) have played a central role in furthering our understanding of classical and quantum many-body systems. TNs not only provide a practical tool for quantum simulations but form a key building block of various fields in theoretical physics. Given the importance of theoretical backgrounds of various TNs, a team of researchers from Japan set out to provide a unified description of the developments in TNs from the statistical mechanics perspective.
They began by looking at the famous 2D Ising model. They showed that using a vertex model representation with 4-leg tensors and a row-to-row transfer matrix T leads very naturally to a variational state in the matrix product state (or MPS) form, which reflects the transfer matrix structure of the square lattice. Further consideration of the variation of the largest eigenvalue of T showed the equivalence of this variation with the variational principle of the MPS for the 1D quantum system. Notably, this consideration also led to the corner transfer matrix (or CTM).
Next, the team highlighted that a systematic formulation of recursive relations for CTMs leads to a real space renormalization group algorithm known as corner transfer matrix renormalization group. In this, the variational principle for the partition function is reformulated for the CTM. The researchers then pointed out the difficulties of recasting this CTM formulation to the 1D quantum system and how they can be bypassed in the formulation of infinite time-evolved block decimation and density matrix renormalization group.
They also highlighted the higher dimension generalization of MPS, such as tensor product states or projected entangled pair states. They then moved onto tensor renormalization groups or TRGs, focusing on their fixed point structures. Lastly, they discussed how tensor network renormalization can help overcome the difficulties associated with TRGs for critical systems, and the multi-scale entanglement renormalization ansatz.
Overall, an understanding of the fundamental background of TN approaches could lead to the development of reliable TN simulations and accelerate the development of quantum technologies, such as quantum computers.
Developments in the Tensor Network — from Statistical Mechanics to Quantum Entanglement
J. Phys. Soc. Jpn.
91,
062001
(2022)
.
Share this topic
Fields
Related Articles
-
Shaping the Future of Materials Science with Tanabe–Sugano Diagrams
Dielectric, optical, and other properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
2025-1-21
This special collection published in the Journal of the Physical Society of Japan celebrates 70 Years of Tanabe–Sugano Diagrams, highlighting their continued role in advancing materials with transition metals.
-
Unlocking Secrets of Novel Charge-Orbital States in Transition-Metal Compounds
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-6
A new Special Topics edition of the Journal of the Physical Society of Japan features articles exploring special transition-metal compounds that exhibit novel charge-orbital states.
-
A New Method for Probing Hidden Multipoles in Crystal Field Quartet Using Ultrasonic Waves
Magnetic properties in condensed matter
2024-12-16
A new method of acoustically driven resonance is proposed to unveil the multipole degrees of freedom of a crystal-field quartet and demonstrate the realization of spin acoustic control.
-
Towards Next Generation Magnetic Storage: Magnetic Skyrmions in EuPtSi
Magnetic properties in condensed matter
2024-12-10
This study explores the magnetic behavior of rare-earth magnet EuPtSi using single-crystal neutron diffraction, potentially revealing magnetic skyrmion lattice formation.
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.