New Systematic Analysis Method of Identifying Microscopic Essential Couplings
© The Physical Society of Japan
This article is on
Systematic Analysis Method for Nonlinear Response Tensors
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
91,
014701
(2022)
.
We propose a systematic method of identifying essential model parameters for nonlinear response tensors. The analysis results reveal fundamental couplings in nontrivial responses and promote further development of multiferroic responses.

Discovering physical responses and elucidating their microscopic mechanisms are central subjects in condensed matter physics. Recently, various linear and nonlinear responses, such as the anomalous Hall effect under antiferromagnetic orderings and nonlinear optoelectronic transport, have been extensively investigated. These responses have been mainly analyzed theoretically by electronic-structure calculation, group-theoretical argument with electronic multipoles, and Berry curvature interpretation in the context of the topology of electronic states. These approaches have their own advantages: the electronic-structure calculation takes account of the complicated electronic band structures quantitatively, while the argument with the electronic multipoles can identify the relevant electronic degrees of freedom from the symmetry viewpoint.
However, in reality, the system contains numerous model parameters, making it difficult to determine the most important factor in various linear and nonlinear responses. Thus, identifying the essential parameters in the responses is significant to obtain a deeper understanding of multiferroic responses, and once determined, they provide a microscopic picture of the response. In other words, minimal couplings among the model parameters, such as electron hopping and spin-orbit coupling, and electric and/or magnetic order parameters are identified, and they provide a useful guideline for designing novel functional materials.
We proposed a systematic analysis method for linear and nonlinear responses that enables us to extract essential model parameters from a large number of parameters of a given theoretical model. Using the Keldysh formalism and Chebyshev polynomial expansion method, the response tensors are decomposed into model-independent and model-dependent parts; the latter is expressed as a power series of the Hamiltonian matrix and operators describing the external input and resultant response. By analyzing the low-order contributions in the model-dependent part analytically, we can identify essential parameters and deduce a microscopic picture of the response as a minimal coupling between the degrees of freedom associated with the essential parameters. We demonstrated our method by analyzing the nonlinear Hall effect in the ferroelectric SnTe monolayer and elucidated the significance of a second-neighbor diagonal hopping with an orbital exchange that always exists regardless of ferroelectric ordering.
The present method is applicable to a wide range of materials such as inorganic/organic molecules and quantum dots because it is not restricted to the periodicity of the crystal. Similarly, the present systematic analysis method reveals hidden couplings between transfer integrals, spin-orbit coupling, and order parameters in various materials, and is expected to provide a useful design guideline for future functional materials.
(Written by R. Oiwa on behalf of all authors)
Systematic Analysis Method for Nonlinear Response Tensors
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
91,
014701
(2022)
.
Share this topic
Fields
Related Articles
-
Beyond Lorentzian Noise: Phonon-Scattering Signatures in Carbon Nanotubes
Cross-disciplinary physics and related areas of science and technology
2025-11-6
Phonon-induced current noise in carbon nanotubes shows multiple resonance peaks in the high-frequency regime, some of which cannot be explained solely by energy and momentum conservation or by harmonic selection rules. These findings highlight nontrivial electron–anharmonic phonon interactions governing quantum transport in carbon nanotubes.
-
How Jewel Beetles Fine-Tune Their Multilayer Reflector for Brilliant Coloration
Dielectric, optical, and other properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-10-28
Jewel beetles enhance their dazzling iridescence by appropriately adjusting the thickness of the surface layers in their natural multilayer reflectors, thereby achieving constructive optical interference.
-
Role of Orbital Currents in Future Solid-State Devices
Electronic transport in condensed matter
2025-10-6
This review explores recent experimental advances in the emerging field of orbitronics, focusing on orbital current mechanisms and orbitronic phenomena, providing key research directions for developing energy-efficient memory devices.
-
Carrier Scattering by Antisite Defects Reverses Thermoelectric Polarity in Fe₂VAl
Electronic transport in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-10-2
Antisite defects in Fe₂VAl create resonance states that boost hole scattering, which shifts carrier dominance to electrons and reverses thermoelectric polarity, thereby offering a new path for material design.
-
New Phases of Active Matter Discovered via Machine Learning
Cross-disciplinary physics and related areas of science and technology
Statistical physics and thermodynamics
2025-9-8
A novel synergy between an active matter model and a machine learning algorithm has been discovered, revealing the possibility of new phases in active matter.
