New Systematic Analysis Method of Identifying Microscopic Essential Couplings
© The Physical Society of Japan
This article is on
Systematic Analysis Method for Nonlinear Response Tensors
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
91,
014701
(2022)
.
We propose a systematic method of identifying essential model parameters for nonlinear response tensors. The analysis results reveal fundamental couplings in nontrivial responses and promote further development of multiferroic responses.
Discovering physical responses and elucidating their microscopic mechanisms are central subjects in condensed matter physics. Recently, various linear and nonlinear responses, such as the anomalous Hall effect under antiferromagnetic orderings and nonlinear optoelectronic transport, have been extensively investigated. These responses have been mainly analyzed theoretically by electronicstructure calculation, grouptheoretical argument with electronic multipoles, and Berry curvature interpretation in the context of the topology of electronic states. These approaches have their own advantages: the electronicstructure calculation takes account of the complicated electronic band structures quantitatively, while the argument with the electronic multipoles can identify the relevant electronic degrees of freedom from the symmetry viewpoint.
However, in reality, the system contains numerous model parameters, making it difficult to determine the most important factor in various linear and nonlinear responses. Thus, identifying the essential parameters in the responses is significant to obtain a deeper understanding of multiferroic responses, and once determined, they provide a microscopic picture of the response. In other words, minimal couplings among the model parameters, such as electron hopping and spinorbit coupling, and electric and/or magnetic order parameters are identified, and they provide a useful guideline for designing novel functional materials.
We proposed a systematic analysis method for linear and nonlinear responses that enables us to extract essential model parameters from a large number of parameters of a given theoretical model. Using the Keldysh formalism and Chebyshev polynomial expansion method, the response tensors are decomposed into modelindependent and modeldependent parts; the latter is expressed as a power series of the Hamiltonian matrix and operators describing the external input and resultant response. By analyzing the loworder contributions in the modeldependent part analytically, we can identify essential parameters and deduce a microscopic picture of the response as a minimal coupling between the degrees of freedom associated with the essential parameters. We demonstrated our method by analyzing the nonlinear Hall effect in the ferroelectric SnTe monolayer and elucidated the significance of a secondneighbor diagonal hopping with an orbital exchange that always exists regardless of ferroelectric ordering.
The present method is applicable to a wide range of materials such as inorganic/organic molecules and quantum dots because it is not restricted to the periodicity of the crystal. Similarly, the present systematic analysis method reveals hidden couplings between transfer integrals, spinorbit coupling, and order parameters in various materials, and is expected to provide a useful design guideline for future functional materials.
(Written by R. Oiwa on behalf of all authors)
Systematic Analysis Method for Nonlinear Response Tensors
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
91,
014701
(2022)
.
Share this topic
Fields
Related Articles

Chiral Gauge Field and Topological Magnetoelectric Response in Fully SpinPolarized Magnetic Weyl Semimetal Co_{3}Sn_{2}S_{2}
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024111
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co_{3}Sn_{2}S_{2}, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.

Electricity Provides Cooling
Crossdisciplinary physics and related areas of science and technology
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
20241015
Electric cooling at low temperatures is successfully achieved using a ferroelectric ferromagnetic solid instead of refrigerant gases such as fluorocarbons. 
PressureTuned Classical–Quantum Crossover in Magnetic FieldInduced Quantum Phase Transitions of a TriangularLattice Antiferromagnet
Crossdisciplinary physics and related areas of science and technology
Electron states in condensed matter
Magnetic properties in condensed matter
202495
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.

Discovery of LightInduced Mirror Symmetry Breaking
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
202492
The authors discovered the lightinduced mirror symmetry breaking, paving the way for controlling mirror symmetries via light and for realizing various phenomena utilizing the mirror symmetry breaking.

Discovery of Unconventional PressureInduced Superconductivity in CrAs
Electronic transport in condensed matter
Superconductivity
2024813
A new study has discovered pressureinduced superconductivity in the helimagnet CrAs, originating in the vicinity of the helimagnetic ordering, representing the first example of superconductivity in Crbased magnetic systems.