Measurements and Implications of Shot Noise in Mesoscopic Systems
© The Physical Society of Japan
This article is on
Shot Noise in Mesoscopic Systems: from Single Particles to Quantum Liquids
J. Phys. Soc. Jpn. 90, 102001 (2021).
Shot noise measurements provide rewarding insights into system properties, non-equilibrium phenomena, and quantum effects in mesoscopic systems.
Mesoscopic physics is the study of systems ranging in size from nanoscale to microns. A major focus in mesoscopic physics is studying the quantum nature of electrons and associated correlated effects. One way to do that is by measuring “shot noise,” a noise originating from the discrete nature of electrons. Recently, researchers from The University of Tokyo and NTT Corporation published a review in the Journal of the Physical Society of Japan, detailing advances in shot noise measurements in mesoscopic systems.
Shot noise is often too small to be measured using commercial ammeters, and therefore, requires special experimental techniques for its quantitative evaluation. In their review, the researchers introduce and discuss the characteristics of several measurement techniques as well as explain the theoretical framework to calculate the shot noise.
Shot noise studies have revealed unique information about a system modeled within a single-particle picture. For example, the measurements enable us to evaluate the spin polarization of an electronic current flowing through a mesoscopic solid-state device, such as a quantum point contact. Furthermore, they can be used to explore the quantum Hall effect breakdown, tunnel junction devices, correlated electron transport through quantum dots, and Fermion quantum optics.
Another fascinating aspect of shot noise measurements is that they can also be used to study quantum liquids. In fact, physical phenomena such as the Kondo effect, the fractional quantum Hall effect, and superconductivity show their peculiarity in shot noise properties as well as conductance. Additionally, shot noise could help detect exotic particles like Majorana fermions and non-Abelian anyons that could help us create a fault-tolerant topological quantum computer.
All in all, understanding shot noise is critical not only to the development of quantum physics but also to new technologies.
Shot Noise in Mesoscopic Systems: from Single Particles to Quantum Liquids
J. Phys. Soc. Jpn. 90, 102001 (2021).
Share this topic
Fields
Related Articles
-
Non-Trivial Superconductivity in the Semimetal EuAuBi
Superconductivity
Magnetic properties in condensed matter
2023-2-22
Magnetic order and superconductivity coexist in a noncentrosymmetric topological semimetal, EuAuBi. EuAuBi exhibits a large, anisotropic critical field with Rashba spin–orbit coupling, which can help develop superconducting spintronic materials.
-
Hidden Magnetoelectric Phase Transition by Emergent Staggered Magnetic Field
Magnetic properties in condensed matter
2023-2-17
Emergent staggered magnetic fields induce phase transition in the multiferroic material Ba2FeSi2O7.
This study established a design principle utilizing emergent staggered magnetic fields to obtain an enhanced physical response. -
Thickness-Dependent Oscillation Behavior of Magnetic Phase Transitions in Pt Ultrathin Films with Small Orbital Moment
Magnetic properties in condensed matter
2023-1-6
Ferromagnetism in nano-Pt films originates from the quantum-confinement effect that depends on film thickness. Studies of the electronic states of nano-Pt will aid in developing methods for efficiently utilizing its large spin-orbit coupling.
-
High Magnetic Field as a Tool for Discovery in Condensed Matter Physics
Magnetic properties in condensed matter
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
Structure and mechanical and thermal properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Measurement, instrumentation, and techniques
2022-12-13
The Journal of the Physical Society of Japan highlights in this special topic recent advances in modern physics that have been realized with the generation of pulsed high magnetic fields.
-
Understanding the Obscure Antiferromagnetism in α-Mn by Nuclear Magnetic Resonance
Magnetic properties in condensed matter
2022-11-29
Although Mn is an elementary metal, the antiferromagnetic state of α-Mn is still obscure. Our NMR study on high-quality α-Mn provides new insights into the symmetry of its antiferromagnetism.