Hybrid Quantum–Classical Algorithms: At the Verge of Useful Quantum Computing
© The Physical Society of Japan
This article is on
Hybrid QuantumClassical Algorithms and Quantum Error Mitigation
J. Phys. Soc. Jpn. 90, 032001 (2021).
Scientists discuss the recent progress in algorithms that have enabled hybrid quantum–classical computers, which has brought the quest to realize useful quantum computing much closer to its finish line.
Hybrid QuantumClassical Algorithms and Quantum Error Mitigation
J. Phys. Soc. Jpn. 90, 032001 (2021).
Share this topic
Fields
Related Articles

Solving a Stochastic Differential Equation is Solving a MeanField Quantum Spin System
Statistical physics and thermodynamics
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Magnetic properties in condensed matter
2024516
The replica method maps matrixvalued geometric Brownian motion to a meanfield quantum spin system. This correspondence makes it possible to obtain an exact solution for matrixvalued geometric Brownian motion.

Which is Moving?—Pinning Down the Origin of Fluctuations in Muon Spin Relaxation—
Structure and mechanical and thermal properties in condensed matter
Crossdisciplinary physics and related areas of science and technology
2024328
The study demonstrated that we can distinguish between the diffusion motion of the muon itself and the motion of the surrounding ions in muon spin relaxation.

Quantum Mechanics of OneDimensional ThreeBody Contact Interactions
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Theoretical Particle Physics
2024213
The quantum mechanical description of topologically nontrivial threebody contact interactions in one dimension is not well understood. This study explores the Hamiltonian description of these interactions using the pathintegral formalism.

Thermodynamic Property of a CMOS Device beyond Landauer Limit
Statistical physics and thermodynamics
Electronic transport in condensed matter
Crossdisciplinary physics and related areas of science and technology
2024123
Focusing on a CMOS NAND GATE operating in a subthreshold region, the thermodynamic cost of computation was analyzed in relation to input/output voltages surpassing the Landauer limit.

Possible Origin of High Thermoelectric Power Factor in Ultrathin FeSe: A Twoband Model
Electronic structure and electrical properties of surfaces and nanostructures
Structure and mechanical and thermal properties in condensed matter
Crossdisciplinary physics and related areas of science and technology
20231221
The high thermoelectric power factor observed in ultrathin FeSe can be theoretically explained by a twoband model with chemical potential between upper and lower band bottoms.