Exploring the Basic Principles and Functionalities of Spintronic Thermal Management
© The Physical Society of Japan
This article is on
Spintronic Thermal Management
J. Phys. Soc. Jpn.
90,
122001
(2021)
.
Electrons in an atom possess spins with two states, one facing upwards and the other downwards. The magnetic moments and degrees of freedom associated with the spins can be manipulated to carry information and transfer energy. Spin caloritronics is a new and upcoming field of research that looks for new ways to drive and control thermal transport and thermoelectric conversion mediated by the spin of electrons.
Most of the fundamental research in this field is focused on heat-to-charge and heat-to-spin conversion phenomena shown by hybrid structures and magnetic materials, and not much is known about the spin-caloritronic properties that give rise to heat currents.
To unravel properties of heat conversion, generation, and transport mediated by spin, a team of researchers from Japan proposed a new concept called “spintronic thermal management.” The concept provides a window to the demonstration of unique heat control functionalities such as local temperature modulation, spintronic thermal switching, active control of thermoelectric conversion, and unidirectional remote heating.
The team also classified the basic behaviors of spintronic thermal management into magneto-thermoelectric effects, thermomagnetic effects, and thermospin effects based on an extensive overview of the conversion phenomenon between spin, charge, and heat currents associated with spin caloritronics.
Ultimately, the study provides a comprehensive understanding of a basic physical phenomenon that opens up avenues for new material development and device engineering for spintronic thermal management. These findings could also come in handy while designing advanced thermal management technologies for high-functioning and reliable electronic devices with better heat distribution and cooling systems.
Spintronic Thermal Management
J. Phys. Soc. Jpn.
90,
122001
(2021)
.
Share this topic
Fields
Related Articles
-
A New Method for Probing Hidden Multipoles in Crystal Field Quartet Using Ultrasonic Waves
Magnetic properties in condensed matter
2024-12-16
A new method of acoustically driven resonance is proposed to unveil the multipole degrees of freedom of a crystal-field quartet and demonstrate the realization of spin acoustic control.
-
Towards Next Generation Magnetic Storage: Magnetic Skyrmions in EuPtSi
Magnetic properties in condensed matter
2024-12-10
This study explores the magnetic behavior of rare-earth magnet EuPtSi using single-crystal neutron diffraction, potentially revealing magnetic skyrmion lattice formation.
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.
-
Imaging Atomic Displacement in BaTiO3 with Neutron Holography
Measurement, instrumentation, and techniques
Structure and mechanical and thermal properties in condensed matter
2024-11-7
Newly developed neutron holography was applied to ferroelectric BaTiO3 to evaluate oxygen displacement, providing important structural information for improving the ability of dielectric materials to store electricity.
-
Chiral Gauge Field and Topological Magnetoelectric Response in Fully Spin-Polarized Magnetic Weyl Semimetal Co3Sn2S2
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024-11-1
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co3Sn2S2, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.