How Good is the TransitionState Theory?
© The Physical Society of Japan
This article is on
J. Phys. Soc. Jpn.
90,
114005
(2021)
.
For the first time, the main assumption of the transitionstate theory for the decay of complex quantum systems across a potential barrier was realized using a microscopic manybody Hamiltonian.
The decay of quantum systems through a potential barrier is ubiquitous in many fields of physics and chemistry, occurring in electron conduction within devices and quantum dots as well as chemical reactions, and nuclear fission. The usual framework for describing the barrier crossing is the "transitionstate" theory, which was invented long ago to investigate chemical reactions and nuclear fission. The main assumption of this theory is that the decay rate is entirely determined at the highest point of the barrier and does not depend on what occurs afterward. This remarkable theory has been part of reaction theory since the 1930s and has been used in disciplines as widely distinct as chemistry and nuclear physics. However, this theory has not been validated for the quantum mechanics of many interacting particles.
In this study, a model was proposed to study reactions in systems with many interacting particles. The model allowed us to test whether the assumptions of the transition state theory could be satisfied in a full quantum theory. The model contains two reservoirs of internal states connected to each other by additional barriertop states, and the reservoir states were considered using random matrix theory.
For the first time, we demonstrated that a main assumption of the transitionstate theory can be easily satisfied by a more detailed theory, that is, the overall decay rate going through the farside reservoir is largely determined by the barrier region and internal properties of the reservoirs, and is insensitive to the individual decay rates of the states out of the farside reservoir.
In a subsequent paper (K. Hagino and G.F. Bertsch, Phys. Rev. E104, L052104(2021)), we applied the same model to discuss the variation of the decay rates between states. There is a wellestablished theory known as the PorterThomas distribution that has been validated for many systems, including atomic spectra, chemical reaction spectra, and nuclei. Surprisingly, our transitionstate model revealed that this distribution differed depending on how large the individual rates were. The new distribution followed a different random matrix model, namely the Gaussian Unitary Ensemble, proposed by Dyson in 1960.
(Written by K. Hagino on behalf of all authors)
J. Phys. Soc. Jpn.
90,
114005
(2021)
.
Share this topic
Fields
Related Articles

A Promising Solution to Nucleon–Nucleon Inverse Scattering Problem
General and Mathematical Physics
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Nuclear physics
2024107
This study deals with the inverse elastic twobody quantum scattering problem using Volterra approximations and neural networks, offering a novel approach for solving complex nonlinear systems.

A New Method for Finding Bound States in the Continuum
General and Mathematical Physics
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Nuclear physics
2024101
This study presents a general theory for constructing potentials supporting bound states in the continuum, offering a method for identifying such states in real quantum systems.

A Neural Thermometer for Predicting Phase Transitions of Unknown Systems
Measurement, instrumentation, and techniques
Statistical physics and thermodynamics
2024911
A novel convolutional neural network predicts phase transition temperatures from spin configurations without prior information about order parameters, paving the way for the discovery of new materials in condensed matter physics.

Solving a Stochastic Differential Equation is Solving a MeanField Quantum Spin System
Magnetic properties in condensed matter
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Statistical physics and thermodynamics
2024516
The replica method maps matrixvalued geometric Brownian motion to a meanfield quantum spin system. This correspondence makes it possible to obtain an exact solution for matrixvalued geometric Brownian motion.

Thermodynamic Property of a CMOS Device beyond Landauer Limit
Crossdisciplinary physics and related areas of science and technology
Electronic transport in condensed matter
Statistical physics and thermodynamics
2024123
Focusing on a CMOS NAND GATE operating in a subthreshold region, the thermodynamic cost of computation was analyzed in relation to input/output voltages surpassing the Landauer limit.