Finding Pattern in Randomness: Brownian Motion of Skyrmions
© The Physical Society of Japan
This article is on
Brownian Motion of Magnetic Skyrmions in One- and Two-Dimensional Systems
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
90,
083601
(2021)
.
The chiral properties of the Brownian motion of magnetic skyrmions in one- and two-dimensional systems in thermal equilibrium are reported.

Magnetic skyrmions exhibit unique dynamical properties. However, it is unclear whether the Brownian motion of skyrmions exhibits chiral properties in thermal equilibrium derived from the Magnus force. For example, when a skyrmion is driven by an electric current, the driving force is parallel to the current. However, its trajectory is bent by the Magnus force, which is proportional to the skyrmion number. Consequently, the skyrmion Hall effect is observed. Such chiral motion of skyrmions has been observed in the presence of a driving force. However, whether the Brownian motion of skyrmions exhibits chiral properties in thermal equilibrium remains unclear. (Note that the chiral property in this study is not that of skyrmions but of their motion.) In this study, we show that chiral properties play an essential role in the diffusion of skyrmions by performing the following two experiments:
Diffusion of skyrmions in one-dimensional and two-dimensional channels
The diffusion coefficient of skyrmions in one-dimensional narrow channels is a factor of 1.3–1.9 larger than that in two-dimensional films. This is because the confinement of skyrmions in one-dimensional channels suppresses their gyration.
Observation of angular momentum of diffusion in two-dimensional systems
We evaluated chiral properties by analyzing the diffusion of skyrmions using the spontaneous velocity–position correlation functions, i.e., <v(t)・x(t)> and <(v(t) × x(t))z> [1], and obtained the finite value of <(v(t)×x(t))z> as a thermal average. This result indicates the existence of the off-diagonal term of the diffusion coefficient of the skyrmions' motion. In addition, the sign of the observed <(v(t)×x(t))z> is opposite to the sign of the simple theoretical prediction, i.e., the direction of rotation is opposite to that predicted by theory. This can be explained by considering the shallow potential fluctuation in the films. The orbit of skyrmions captured by the harmonic potential was a hypotrochoid, a combination of two circular motions, with thermal fluctuation. The small, high-frequency circular motion was the intrinsic gyration of skyrmions. In contrast, a low-frequency orbit that rotated along the edge of the potential exhibited reverse rotation. Because the camera's frame rate was set at 30 ms−1 in the experiments, only the global rotation in the direction opposite to that of the local gyration was observed. The observation of the intrinsic gyration and mass of skyrmions under Brownian motion should be examined in the future [2].
(Written by S. Miki on behalf of all authors)
References
[1] Y. Suzuki, S. Miki, Y. Imai, and E. Tamura, Phys. Lett. A, 413, 127603 (2021), and references therein.
[2] I. Makhfudz, B. Krüger, and O. Tchernyshyov, Phys. Rev. Lett. 109, 217201 (2012).
Brownian Motion of Magnetic Skyrmions in One- and Two-Dimensional Systems
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
90,
083601
(2021)
.
Share this topic
Fields
Related Articles
-
How Jewel Beetles Fine-Tune Their Multilayer Reflector for Brilliant Coloration
Dielectric, optical, and other properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-10-28
Jewel beetles enhance their dazzling iridescence by appropriately adjusting the thickness of the surface layers in their natural multilayer reflectors, thereby achieving constructive optical interference.
-
S-Wave Spin Splitting Drives Unconventional Piezomagnetism in an Organic Altermagnet
Electron states in condensed matter
Magnetic properties in condensed matter
2025-10-21
This work provides a theoretical demonstration of piezomagnetic effects in an organic altermagnet, arising from strain-induced asymmetries in exchange interactions and orbital degrees of freedom, thereby revealing new opportunities for organic spintronics.
-
Two-Dimensional Charge Ordering Emerging from the Charge Glass State
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-10-14
A newly discovered phase in layered organic conductors exhibits enhanced magnetic susceptibility, indicating two-dimensional charge ordering, which is distinct from both the charge-glass and three-dimensional charge-ordered phases.
-
Role of Orbital Currents in Future Solid-State Devices
Electronic transport in condensed matter
2025-10-6
This review explores recent experimental advances in the emerging field of orbitronics, focusing on orbital current mechanisms and orbitronic phenomena, providing key research directions for developing energy-efficient memory devices.
-
Carrier Scattering by Antisite Defects Reverses Thermoelectric Polarity in Fe₂VAl
Electronic transport in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-10-2
Antisite defects in Fe₂VAl create resonance states that boost hole scattering, which shifts carrier dominance to electrons and reverses thermoelectric polarity, thereby offering a new path for material design.
