Nanospace-confined Helium Shows Four-dimensional Quantum Phase Transition (QPT)
© The Physical Society of Japan
This article is on
Evidence for 4D XY Quantum Criticality in 4He Confined in Nanoporous Media at Finite Temperatures
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
90,
033601
(2021)
.
Helium confined in a nanoporous material shows a four dimensional superfluid transition. This is a unique example of four dimensional critical phenomenon caused by strong quantum fluctuation.
Evidence for 4D XY Quantum Criticality in 4He Confined in Nanoporous Media at Finite Temperatures
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
90,
033601
(2021)
.
Share this topic
Fields
Related Articles
-
Unlocking Secrets of Novel Charge-Orbital States in Transition-Metal Compounds
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-6
A new Special Topics edition of the Journal of the Physical Society of Japan features articles exploring special transition-metal compounds that exhibit novel charge-orbital states.
-
Imaging Atomic Displacement in BaTiO3 with Neutron Holography
Measurement, instrumentation, and techniques
Structure and mechanical and thermal properties in condensed matter
2024-11-7
Newly developed neutron holography was applied to ferroelectric BaTiO3 to evaluate oxygen displacement, providing important structural information for improving the ability of dielectric materials to store electricity.
-
Electricity Provides Cooling
Cross-disciplinary physics and related areas of science and technology
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2024-10-15
Electric cooling at low temperatures is successfully achieved using a ferroelectric ferromagnetic solid instead of refrigerant gases such as fluorocarbons. -
Evaluation of the Exchange Stiffness Constants of Itinerant Magnets from the First-Principles Calculations
Electron states in condensed matter
Structure and mechanical and thermal properties in condensed matter
2024-6-5
Using first-principles calculations, we evaluated the exchange stiffness constants of ferromagnetic metals at finite temperatures. The constants can be used as parameters in the Landau–Lifshitz–Gilbert equation.
-
Which is Moving?—Pinning Down the Origin of Fluctuations in Muon Spin Relaxation—
Cross-disciplinary physics and related areas of science and technology
Structure and mechanical and thermal properties in condensed matter
2024-3-28
The study demonstrated that we can distinguish between the diffusion motion of the muon itself and the motion of the surrounding ions in muon spin relaxation.