A Solvent Viscosity-dependent Thermoelectric Conversion Efficiency
© The Physical Society of Japan
This article is on
Scaling Relation between Electrochemical Seebeck Coefficient for Fe2+/Fe3+ in Organic Solvent and Its Viscosity
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
90,
033602
(2021)
.
We found a beautiful empirical rule (α ∝ η-0.4) between the electrochemical Seebeck coefficient α for Fe2+/Fe3+ redox pair and viscosity coefficient η of the organic solvent.
Scaling Relation between Electrochemical Seebeck Coefficient for Fe2+/Fe3+ in Organic Solvent and Its Viscosity
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
90,
033602
(2021)
.
Share this topic
Fields
Related Articles
-
How Jewel Beetles Fine-Tune Their Multilayer Reflector for Brilliant Coloration
Dielectric, optical, and other properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-10-28
Jewel beetles enhance their dazzling iridescence by appropriately adjusting the thickness of the surface layers in their natural multilayer reflectors, thereby achieving constructive optical interference.
-
Two-Dimensional Charge Ordering Emerging from the Charge Glass State
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-10-14
A newly discovered phase in layered organic conductors exhibits enhanced magnetic susceptibility, indicating two-dimensional charge ordering, which is distinct from both the charge-glass and three-dimensional charge-ordered phases.
-
Carrier Scattering by Antisite Defects Reverses Thermoelectric Polarity in Fe₂VAl
Electronic transport in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-10-2
Antisite defects in Fe₂VAl create resonance states that boost hole scattering, which shifts carrier dominance to electrons and reverses thermoelectric polarity, thereby offering a new path for material design.
-
Mysterious Softening Discovered in Synthetic Diamonds
Electromagnetism, optics, acoustics, heat transfer, and classical and fluid mechanics
Structure and mechanical and thermal properties in condensed matter
2025-7-22
A softening phenomenon below 1 K was discovered in diamond, the hardest known material, suggesting the presence of a hidden quantum ground state with electric quadrupolar degrees of freedom arising from lattice defects.
-
Ferroaxial Order: Visualizing Domain States with Chirality Induced by an Applied Electric Field
Dielectric, optical, and other properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-7-7
Ferroaxial domains were visualized in the glaserite-type compound Na2BaM(PO4)2 (M = divalent metal) using the linear electrogyration effect with polarization microscopy combined with a field-modulation imaging technique.

