Nanospace-confined Helium Shows Four-dimensional Quantum Phase Transition (QPT)
© The Physical Society of Japan
This article is on
Evidence for 4D XY Quantum Criticality in 4He Confined in Nanoporous Media at Finite Temperatures
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
90,
033601
(2021)
.
Helium confined in a nanoporous material shows a four dimensional superfluid transition. This is a unique example of four dimensional critical phenomenon caused by strong quantum fluctuation.
Evidence for 4D XY Quantum Criticality in 4He Confined in Nanoporous Media at Finite Temperatures
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
90,
033601
(2021)
.
Share this topic
Fields
Related Articles
-
How Jewel Beetles Fine-Tune Their Multilayer Reflector for Brilliant Coloration
Dielectric, optical, and other properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-10-28
Jewel beetles enhance their dazzling iridescence by appropriately adjusting the thickness of the surface layers in their natural multilayer reflectors, thereby achieving constructive optical interference.
-
Two-Dimensional Charge Ordering Emerging from the Charge Glass State
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-10-14
A newly discovered phase in layered organic conductors exhibits enhanced magnetic susceptibility, indicating two-dimensional charge ordering, which is distinct from both the charge-glass and three-dimensional charge-ordered phases.
-
Carrier Scattering by Antisite Defects Reverses Thermoelectric Polarity in Fe₂VAl
Electronic transport in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-10-2
Antisite defects in Fe₂VAl create resonance states that boost hole scattering, which shifts carrier dominance to electrons and reverses thermoelectric polarity, thereby offering a new path for material design.
-
Mysterious Softening Discovered in Synthetic Diamonds
Electromagnetism, optics, acoustics, heat transfer, and classical and fluid mechanics
Structure and mechanical and thermal properties in condensed matter
2025-7-22
A softening phenomenon below 1 K was discovered in diamond, the hardest known material, suggesting the presence of a hidden quantum ground state with electric quadrupolar degrees of freedom arising from lattice defects.
-
Ferroaxial Order: Visualizing Domain States with Chirality Induced by an Applied Electric Field
Dielectric, optical, and other properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-7-7
Ferroaxial domains were visualized in the glaserite-type compound Na2BaM(PO4)2 (M = divalent metal) using the linear electrogyration effect with polarization microscopy combined with a field-modulation imaging technique.

