Spin-Spin Interaction Mediated by Rotational Lattice Vibrations
© The Physical Society of Japan
This article is on
Spin-Spin Interaction Mediated by Chiral Phonons
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
93,
123705
(2024)
.
This study predicts the presence of spin-spin interactions mediated by the angular momentum of lattice vibrations, which can be long-range.

In solids, atoms are arranged in a regular pattern; however, atoms can vibrate from their equilibrium positions through vibrational modes known as phonons. In particular, the circularly polarized vibrational motions of ions are called chiral phonons (note that there is another definition for chiral phonons. In this study, we refer to two-dimensional (2D) rotational phonons as chiral phonons).
Chiral phonons exhibit angular and magnetic moments owing to the rotational motion of the ions. The rotation of the ions also induces effective magnetic fields that can be relatively large (of the order of 1 T). Chiral phonons can couple with spins through the Zeeman effect of these magnetic fields.
Recent experimental reports have suggested that the spin–spin interaction through an insulator is mediated by chiral phonons, which cannot be explained by electronic mechanisms. However, although this interaction may be attributed to chiral phonons, the microscopic mechanism remains unclear. The electronic origins of the mechanisms of spin–spin interactions have been extensively investigated. Thus, one fundamental question is: What is the signature of boson-mediated spin–spin interactions?
To address these problems, we investigated the interaction between two localized spins on top of a 2D insulator in the presence of chiral phonons. We demonstrated that this interaction was mediated by chiral phonons through spin-chiral phonon coupling. The exchange interactions were always positive because of the bosonic nature of phonons. We found that the exchange interactions for acoustic and optical phonons (i.e., in-phase and out-of-phase motions of neighboring atoms) exhibited a power-law decay with respect to the distance between two localized spins and were proportional to the temperature of the system at high temperatures. Furthermore, the chiral phonon-induced spin-spin interaction exhibited a power-law decay, corresponding to the propagation of phonons in insulators. Therefore, this interaction can become the dominant mechanism for spin-spin interactions in magnetic insulators.
Further, an extremely small rotation of atoms can induce a strong magnetic field (on the order of 1 T); therefore, chiral phonons can be regarded as tiny magnets. The interaction between chiral phonons and spin (or magnetization), such as the magnetization reversal induced by chiral phonons, has been actively researched in recent years. Applications to new device principles are anticipated in combination with studies on spintronics.
(Written by T. Yokoyama)
Spin-Spin Interaction Mediated by Chiral Phonons
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
93,
123705
(2024)
.
Share this topic
Fields
Related Articles
-
Triangular Lattice Magnet GdGa2: Spin Cycloids and Skyrmions
Cross-disciplinary physics and related areas of science and technology
Electronic transport in condensed matter
Magnetic properties in condensed matter
2025-2-3
Careful measurements were conducted on the hexagonal magnet GdGa2 to reveal the experimental signatures of ultrasmall spin cycloids and of a potential Néel-type skyrmion lattice phase induced by a magnetic field.
-
Shaping the Future of Materials Science with Tanabe–Sugano Diagrams
Dielectric, optical, and other properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
2025-1-21
This special collection published in the Journal of the Physical Society of Japan celebrates 70 Years of Tanabe–Sugano Diagrams, highlighting their continued role in advancing materials with transition metals.
-
Unlocking Secrets of Novel Charge-Orbital States in Transition-Metal Compounds
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-6
A new Special Topics edition of the Journal of the Physical Society of Japan features articles exploring special transition-metal compounds that exhibit novel charge-orbital states.
-
A New Method for Probing Hidden Multipoles in Crystal Field Quartet Using Ultrasonic Waves
Magnetic properties in condensed matter
2024-12-16
A new method of acoustically driven resonance is proposed to unveil the multipole degrees of freedom of a crystal-field quartet and demonstrate the realization of spin acoustic control.
-
Towards Next Generation Magnetic Storage: Magnetic Skyrmions in EuPtSi
Magnetic properties in condensed matter
2024-12-10
This study explores the magnetic behavior of rare-earth magnet EuPtSi using single-crystal neutron diffraction, potentially revealing magnetic skyrmion lattice formation.