Antiferromagnetism Induces Dissipationless Transverse Conductivity
© The Physical Society of Japan
This article is on
Intrinsic Anomalous Hall Effect Arising from Antiferromagnetic as Revealed by High-Quality NbMnP
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
93,
063702
(2024)
.
An investigation using high-quality NbMnP crystals demonstrates that the anomalous Hall conductivity arising from antiferromagnetism is dissipationless, as expected from the intrinsic mechanism.
The anomalous Hall effect (AHE) is the Hall effect that emerges at zero magnetic fields. It was discovered in ferromagnets more than 100 years ago; however, its mechanism had long been controversial. In the 2000s, the band-structure effect, known as the intrinsic mechanism, was reconstructed based on the Berry phase concept. Many theoretical and experimental investigations revealed that the intrinsic mechanism contributes significantly to the AHE in ferromagnets. This is experimentally confirmed by observing the scattering dependence of the anomalous Hall conductivity (AHC), i.e., the transverse conductivity, because the intrinsic mechanism contributes to a dissipationless AHC, which is independent of scattering.
Meanwhile, the Berry phase concept clarifies that the AHE is not triggered by magnetization but by symmetry breaking. This resulted in the discovery of the prominent AHEs in antiferromagnetic (AF) materials. Several AF materials exhibiting the AHE have been discovered; however, a system that can offer high-quality crystals has not been discovered. The scattering dependence of the AHC arising from AF structures must be investigated.
In this study, high-quality crystals with large AHE arising from the AF structure were obtained in NbMnP using the Ga-flux method. Using high-quality NbMnP, we investigated the scattering dependence of the AHC against a wide range of electrical conductivities. Consequently, dissipationless AHC was experimentally confirmed for the AF material.
The prospective benefits of obtaining high-quality NbMnP are not limited to understanding the AHE. This AF material is expected to generate other ferromagnetic responses, such as the anomalous Nernst effect (ANE). Influence of disorder on the ANE has not been investigated comprehensively, including that for ferromagnets; thus, their impurity dependence must be elucidated. NbMnP is a suitable material for assessing the effect of impurities on ferromagnetic responses under the AF spin configuration.
(Written by Y. Arai on behalf of all authors.)
Intrinsic Anomalous Hall Effect Arising from Antiferromagnetic as Revealed by High-Quality NbMnP
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
93,
063702
(2024)
.
Share this topic
Fields
Related Articles
-
A New Method for Probing Hidden Multipoles in Crystal Field Quartet Using Ultrasonic Waves
Magnetic properties in condensed matter
2024-12-16
A new method of acoustically driven resonance is proposed to unveil the multipole degrees of freedom of a crystal-field quartet and demonstrate the realization of spin acoustic control.
-
Towards Next Generation Magnetic Storage: Magnetic Skyrmions in EuPtSi
Magnetic properties in condensed matter
2024-12-10
This study explores the magnetic behavior of rare-earth magnet EuPtSi using single-crystal neutron diffraction, potentially revealing magnetic skyrmion lattice formation.
-
The Stiffness of Electronic Nematicity
Dielectric, optical, and other properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
2024-11-21
Using laser-excited photoelectron emission microscope (laser-PEEM) we found that the nematic stiffness in iron-based superconductors significantly increases as the systems become strange metals, suggesting that spin–orbital fluctuations enhance the stiffness of electronic nematicity.
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.
-
Chiral Gauge Field and Topological Magnetoelectric Response in Fully Spin-Polarized Magnetic Weyl Semimetal Co3Sn2S2
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024-11-1
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co3Sn2S2, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.