Structural Rotation and Falsely Chiral Antiferromagnetism: A New Combination Generating Ferrotoroidic State
© The Physical Society of Japan
This article is on
Ferrotoroidic State Induced by Structural Rotation and Falsely Chiral Antiferromagnetism in PbMn2Ni6Te3O18
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
93,
063703
(2024)
.
The ferrotoroidic state, an exotic state of matter with broken space inversion and time-reversal symmetries, was achieved by combining structural rotation and falsely chiral antiferromagnetism in PbMn2Ni6Te3O18.
The ferrotoroidic state is an exotic state of matter characterized by the breaking of both space-inversion and time-reversal symmetries because of a particular arrangement of magnetic moments (spins) and/or constituent atoms (ions). This multiple symmetry breaking can lead to various unconventional physical phenomena. A representative example is the linear magnetoelectric (ME) effect, that is, the linear induction of electric polarization or magnetization by an applied magnetic or electric field, respectively. This effect allows magnetism to be manipulated using an applied electric field. In addition, when a light beam propagates in a ferrotoroidic material, the absorption coefficients of the two counter-propagating light beams can differ. This phenomenon is called nonreciprocal directional dichroism (NDD) and has potential applications in novel optical devices. Furthermore, the nonreciprocal propagation of (quasi-)particles and current-induced magnetization can also occur in ferrotoroidic materials. Therefore, the search for new ferrotoroidic materials and the mechanisms that generate ferrotoroidic states are of great interest.
In this study, the authors investigated the optical properties of PbMn2Ni6Te3O18, which consists of a rotational arrangement of structural units (i.e., structural rotation) and exhibits antiferromagnetic order below 86 K. The antiferromagnetic order in this material is regarded as “falsely” chiral because a mirror-image pair of the spin arrangement cannot be superimposed on each other (i.e., apparently chiral); however, unlike a chiral object, it can be related by a time-reversal operation. The authors successfully observed NDD signals in the antiferromagnetic state by measuring the optical absorption coefficient of counterpropagating unpolarized light beams. NDD for unpolarized light beams occurs only when a material is in a ferrotoroidic state. Therefore, the present results demonstrate that the ferrotoroidic state is induced by structural rotation and falsely chiral antiferromagnetism in PbMn2Ni6Te3O18.
In recent decades, the ferrotoroidic state has been intensively studied as a source of interesting physical phenomena. Several mechanisms generating the ferrotoroidic state have been revealed, including the emergence of a torus-shaped arrangement of magnetic moments, a combination of chirality and magnetization, and mutually orthogonal electric polarization and magnetization. The combination of structural rotation and falsely chiral antiferromagnetism differs from conventional mechanisms. Therefore, the present work provides a new route for achieving a ferrotoroidic state, stimulating further exploration of ferrotoroidic materials and their exotic physical properties.
(Written by K. Kimura on behalf of all the authors)
Ferrotoroidic State Induced by Structural Rotation and Falsely Chiral Antiferromagnetism in PbMn2Ni6Te3O18
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
93,
063703
(2024)
.
Share this topic
Fields
Related Articles
-
A New Method for Probing Hidden Multipoles in Crystal Field Quartet Using Ultrasonic Waves
Magnetic properties in condensed matter
2024-12-16
A new method of acoustically driven resonance is proposed to unveil the multipole degrees of freedom of a crystal-field quartet and demonstrate the realization of spin acoustic control.
-
Towards Next Generation Magnetic Storage: Magnetic Skyrmions in EuPtSi
Magnetic properties in condensed matter
2024-12-10
This study explores the magnetic behavior of rare-earth magnet EuPtSi using single-crystal neutron diffraction, potentially revealing magnetic skyrmion lattice formation.
-
The Stiffness of Electronic Nematicity
Dielectric, optical, and other properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
2024-11-21
Using laser-excited photoelectron emission microscope (laser-PEEM) we found that the nematic stiffness in iron-based superconductors significantly increases as the systems become strange metals, suggesting that spin–orbital fluctuations enhance the stiffness of electronic nematicity.
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.
-
Chiral Gauge Field and Topological Magnetoelectric Response in Fully Spin-Polarized Magnetic Weyl Semimetal Co3Sn2S2
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024-11-1
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co3Sn2S2, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.