Exploring Electronic States in BEDT-TTF Organic Superconductors
© The Physical Society of Japan
This article is on
Mottness and Spin Liquidity in a Doped Organic Superconductor κ-(BEDT-TTF)4Hg2.89Br8
J. Phys. Soc. Jpn.
93,
042001
(2024)
.
This review, published in the Journal of the Physical Society of Japan, provides a comprehensive summary of the electronic states observed in BEDT-TTF type organic superconductors, including metal-insulator transitions, Mottness transitions, non-Fermi liquids, quantum spin liquids, and Bose-Einstein condensation.
Much like inorganic metals, organic compounds can exhibit superconductivity at low temperatures where electrons move through the material without any resistance. However, unlike conventional inorganic metals, the superconductivity is due to strong electron-electron interactions.
To reveal the electronic states responsible for the material’s superconducting behavior, a review published in Journal of the Physical Society of Japan summarizes the electronic states inherent in a BEDT-TTF or bis(ethylenedithio)tetrathiafulvalene type of organic superconductor.
κ-type BEDT-TTF compounds have a layered structure composed of anion layers and BEDT-TTF layers. These molecules form a distinctive triangular lattice, resulting in a hole-like Fermi surface at half-filling, where strong electron correlations hold electrons at the lattice sites, leading to a Mott insulating state.
The review highlights that, under pressure, the compound with a half-filled electronic configuration undergoes a metal-insulator transition due to a shift in the occupancy of electronic states. This is accompanied by the Mottness transition which is the tendency or degree of prohibited double occupation. However, when additional charge carriers are introduced into the material through doping, the excess electrons or holes make the material conductive even under the prohibition of double occupancy.
In such cases, two distinct metallic states are formed: a conventional Fermi liquid at high pressures and a non-Fermi liquid state at low pressures. The high-pressure state exhibits typical Bardeen-Cooper-Schrieffer superconductivity due to Cooper pairing of conventional Fermi particles. As the material passes through the Mottness transition at low pressures, it behaves as a quantum spin liquid, exhibiting Bose-Einstein Condensate-like superconductivity.
These findings underscore the significance of pressure and cooling in effectively managing electron interactions, that lead to the formation of a superconducting state.
The insights gained may contribute to understanding similar phenomena in complex electron systems and hold potential value in the information industry, where efficient electron control is essential for energy conservation.
Mottness and Spin Liquidity in a Doped Organic Superconductor κ-(BEDT-TTF)4Hg2.89Br8
J. Phys. Soc. Jpn.
93,
042001
(2024)
.
Share this topic
Fields
Related Articles
-
Fractional Vortex Array with Nontrivial Topological Structure Realized at Twin Boundary of Nematic Superconductor
Superconductivity
2025-3-24
Analysis of the two-component Ginzburg-Landau theory suggests that a conventional vortex is transformed into two fractional vortices with the topological nature of core-down and core-up merons at the twin boundary of a nematic superconductor.
-
Exploring the Vibrant Interplay of Machine Learning and Physics
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Elementary particles, fields, and strings
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Statistical physics and thermodynamics
Superconductivity
2025-3-13
This Journal of the Physical Society of Japan Special Topics edition explores how physics and machine learning complement each other and can solve unresolved problems in physics.
-
Understanding Pressure-Induced Superconductivity in CrAs and MnP
Magnetic properties in condensed matter
2025-3-10
This study reviews existing research on the pressure-induced variation of magnetic properties of transition metal mono-pnictides like CrAS, MnP, and others, aiming to understand the unconventional superconductivity observed in CrAs and MnP.
-
A Unified Theory of Topological Hall Effect
Electronic transport in condensed matter
2025-3-6
This paper presents a unified theoretical description for the topological Hall effect, covering the entire region from strong- to weak-coupling, extending its picture beyond the Berry phase.
-
Excitonic Insulators: Challenges in Realizing a Theoretically Predicted State of Matter
Electron states in condensed matter
Electronic transport in condensed matter
2025-3-3
The realization of an excitonic insulator can help in the establishment of a new electronic state in condensed matter physics, one that has the potential to exhibit novel electric, magnetic, and optical responses beyond those of conventional materials.