Exploring Electronic States in BEDT-TTF Organic Superconductors
© The Physical Society of Japan
This article is on
Mottness and Spin Liquidity in a Doped Organic Superconductor κ-(BEDT-TTF)4Hg2.89Br8
J. Phys. Soc. Jpn.
93,
042001
(2024)
.
This review, published in the Journal of the Physical Society of Japan, provides a comprehensive summary of the electronic states observed in BEDT-TTF type organic superconductors, including metal-insulator transitions, Mottness transitions, non-Fermi liquids, quantum spin liquids, and Bose-Einstein condensation.
Much like inorganic metals, organic compounds can exhibit superconductivity at low temperatures where electrons move through the material without any resistance. However, unlike conventional inorganic metals, the superconductivity is due to strong electron-electron interactions.
To reveal the electronic states responsible for the material’s superconducting behavior, a review published in Journal of the Physical Society of Japan summarizes the electronic states inherent in a BEDT-TTF or bis(ethylenedithio)tetrathiafulvalene type of organic superconductor.
κ-type BEDT-TTF compounds have a layered structure composed of anion layers and BEDT-TTF layers. These molecules form a distinctive triangular lattice, resulting in a hole-like Fermi surface at half-filling, where strong electron correlations hold electrons at the lattice sites, leading to a Mott insulating state.
The review highlights that, under pressure, the compound with a half-filled electronic configuration undergoes a metal-insulator transition due to a shift in the occupancy of electronic states. This is accompanied by the Mottness transition which is the tendency or degree of prohibited double occupation. However, when additional charge carriers are introduced into the material through doping, the excess electrons or holes make the material conductive even under the prohibition of double occupancy.
In such cases, two distinct metallic states are formed: a conventional Fermi liquid at high pressures and a non-Fermi liquid state at low pressures. The high-pressure state exhibits typical Bardeen-Cooper-Schrieffer superconductivity due to Cooper pairing of conventional Fermi particles. As the material passes through the Mottness transition at low pressures, it behaves as a quantum spin liquid, exhibiting Bose-Einstein Condensate-like superconductivity.
These findings underscore the significance of pressure and cooling in effectively managing electron interactions, that lead to the formation of a superconducting state.
The insights gained may contribute to understanding similar phenomena in complex electron systems and hold potential value in the information industry, where efficient electron control is essential for energy conservation.
Mottness and Spin Liquidity in a Doped Organic Superconductor κ-(BEDT-TTF)4Hg2.89Br8
J. Phys. Soc. Jpn.
93,
042001
(2024)
.
Share this topic
Fields
Related Articles
-
The Stiffness of Electronic Nematicity
Dielectric, optical, and other properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
2024-11-21
Using laser-excited photoelectron emission microscope (laser-PEEM) we found that the nematic stiffness in iron-based superconductors significantly increases as the systems become strange metals, suggesting that spin–orbital fluctuations enhance the stiffness of electronic nematicity.
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.
-
Chiral Gauge Field and Topological Magnetoelectric Response in Fully Spin-Polarized Magnetic Weyl Semimetal Co3Sn2S2
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024-11-1
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co3Sn2S2, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.
-
Electricity Provides Cooling
Cross-disciplinary physics and related areas of science and technology
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2024-10-15
Electric cooling at low temperatures is successfully achieved using a ferroelectric ferromagnetic solid instead of refrigerant gases such as fluorocarbons. -
Single-Crystal Growth of a Cuprate Superconductor with the Highest Critical Temperature
Superconductivity
2024-5-20
Millimeter-sized single crystals of a trilayer cuprate superconductor (Hg,Re)Ba2Ca2Cu3O8+δ that exhibits the highest superconducting transition temperature under ambient pressure, were grown reproducibly and safely.