Exploring Electronic States in BEDT-TTF Organic Superconductors
© The Physical Society of Japan
This article is on
Mottness and Spin Liquidity in a Doped Organic Superconductor κ-(BEDT-TTF)4Hg2.89Br8
J. Phys. Soc. Jpn.
93,
042001
(2024)
.
This review, published in the Journal of the Physical Society of Japan, provides a comprehensive summary of the electronic states observed in BEDT-TTF type organic superconductors, including metal-insulator transitions, Mottness transitions, non-Fermi liquids, quantum spin liquids, and Bose-Einstein condensation.
Much like inorganic metals, organic compounds can exhibit superconductivity at low temperatures where electrons move through the material without any resistance. However, unlike conventional inorganic metals, the superconductivity is due to strong electron-electron interactions.
To reveal the electronic states responsible for the material’s superconducting behavior, a review published in Journal of the Physical Society of Japan summarizes the electronic states inherent in a BEDT-TTF or bis(ethylenedithio)tetrathiafulvalene type of organic superconductor.
κ-type BEDT-TTF compounds have a layered structure composed of anion layers and BEDT-TTF layers. These molecules form a distinctive triangular lattice, resulting in a hole-like Fermi surface at half-filling, where strong electron correlations hold electrons at the lattice sites, leading to a Mott insulating state.
The review highlights that, under pressure, the compound with a half-filled electronic configuration undergoes a metal-insulator transition due to a shift in the occupancy of electronic states. This is accompanied by the Mottness transition which is the tendency or degree of prohibited double occupation. However, when additional charge carriers are introduced into the material through doping, the excess electrons or holes make the material conductive even under the prohibition of double occupancy.
In such cases, two distinct metallic states are formed: a conventional Fermi liquid at high pressures and a non-Fermi liquid state at low pressures. The high-pressure state exhibits typical Bardeen-Cooper-Schrieffer superconductivity due to Cooper pairing of conventional Fermi particles. As the material passes through the Mottness transition at low pressures, it behaves as a quantum spin liquid, exhibiting Bose-Einstein Condensate-like superconductivity.
These findings underscore the significance of pressure and cooling in effectively managing electron interactions, that lead to the formation of a superconducting state.
The insights gained may contribute to understanding similar phenomena in complex electron systems and hold potential value in the information industry, where efficient electron control is essential for energy conservation.
Mottness and Spin Liquidity in a Doped Organic Superconductor κ-(BEDT-TTF)4Hg2.89Br8
J. Phys. Soc. Jpn.
93,
042001
(2024)
.
Share this topic
Fields
Related Articles
-
Shaping the Future of Materials Science with Tanabe–Sugano Diagrams
Dielectric, optical, and other properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
2025-1-21
This special collection published in the Journal of the Physical Society of Japan celebrates 70 Years of Tanabe–Sugano Diagrams, highlighting their continued role in advancing materials with transition metals.
-
Unlocking Secrets of Novel Charge-Orbital States in Transition-Metal Compounds
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-6
A new Special Topics edition of the Journal of the Physical Society of Japan features articles exploring special transition-metal compounds that exhibit novel charge-orbital states.
-
Large Thermoelectric Effect in High Mobility Semimetals
Electronic transport in condensed matter
2024-12-23
This study clarifies that the high mobility semimetal Ta2PdSe6 generates large Seebeck and Nernst effects at low temperatures, providing insight for exploring good thermoelectric materials for low-temperature applications.
-
A New Method for Probing Hidden Multipoles in Crystal Field Quartet Using Ultrasonic Waves
Magnetic properties in condensed matter
2024-12-16
A new method of acoustically driven resonance is proposed to unveil the multipole degrees of freedom of a crystal-field quartet and demonstrate the realization of spin acoustic control.
-
Towards Next Generation Magnetic Storage: Magnetic Skyrmions in EuPtSi
Magnetic properties in condensed matter
2024-12-10
This study explores the magnetic behavior of rare-earth magnet EuPtSi using single-crystal neutron diffraction, potentially revealing magnetic skyrmion lattice formation.