Thermodynamic Property of a CMOS Device beyond Landauer Limit
© The Physical Society of Japan
This article is on
J. Phys. Soc. Jpn.
92,
124004
(2023)
.
Focusing on a CMOS NAND GATE operating in a subthreshold region, the thermodynamic cost of computation was analyzed in relation to input/output voltages surpassing the Landauer limit.
Understanding the thermodynamic properties of computation is not only physically interesting but also holds significant practical implications.
In 1961, Rolf Landauer from IBM introduced the Landauer principle, establishing a lower bound for the dissipation of energy required to reliably erasing one bit of information. The bound is expressed as k_{B}T ln 2, where k_{B} is the Boltzmann constant, and T is the temperature of a thermal reservoir. This value is approximately 3.0✕10^{21} J at room temperature. Although extremely small, achieving this limit is feasible through the quasistatic erasure process of memory. However, practical implementation may result in increased energy dissipation. Beyond serving as mere memory systems, computers execute complex mathematical operations through logic circuits composed of numerous logic gates. Hence, discussing the thermodynamic properties of this system is interesting.
Recent advancements in nonequilibrium statistical mechanics have unveiled instances of dissipation surpassing the Landauer bound in practical applications. In addition to memory systems, the thermodynamic analysis of more complex computers, such as logic circuits, Brownian computers, and models proposed in computer science, has become possible. However, existing studies are limited to ideal models and settings. For physically implemented computers, only a few studies have analyzed the relationship between computational processes and their thermodynamic properties.
This study focuses on a specific logic gate and analyzes the thermodynamic properties in terms of the extended Landauer bound. NAND gates, comprising CMOS transistors operating in subthreshold regions, exhibit additional dissipation due to dynamic changes in the logical states encoded in the output voltage. These findings have been quantitatively revealed.
The Landauer bound stems from logical irreversibility and the inability to accurately infer the input from the output state after computation. This reduces the number of logical states (M) to be realized before and after the computation, thus increasing the corresponding entropy (H), up to ln 2 in the case of a 1bit complete information erasure. In this study, alongside the dissipation associated with this logical irreversibility, an additional dissipation, contingent on the initial system distribution, was identified through an investigation of the KullbackLeibler divergence. While no difference was observed in the former dissipation under varying input voltage conditions, the latter exhibited greater dissipation under certain conditions. We interpret this factor as a consequence of logic state flipping.
The relevance of thermodynamic properties for more complex physical computers has not been completely understood, and further research is required.
(Written by D. Yoshino on behalf of all authors)
J. Phys. Soc. Jpn.
92,
124004
(2023)
.
Share this topic
Fields
Related Articles

Chiral Gauge Field and Topological Magnetoelectric Response in Fully SpinPolarized Magnetic Weyl Semimetal Co_{3}Sn_{2}S_{2}
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024111
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co_{3}Sn_{2}S_{2}, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.

Electricity Provides Cooling
Crossdisciplinary physics and related areas of science and technology
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
20241015
Electric cooling at low temperatures is successfully achieved using a ferroelectric ferromagnetic solid instead of refrigerant gases such as fluorocarbons. 
A Neural Thermometer for Predicting Phase Transitions of Unknown Systems
Measurement, instrumentation, and techniques
Statistical physics and thermodynamics
2024911
A novel convolutional neural network predicts phase transition temperatures from spin configurations without prior information about order parameters, paving the way for the discovery of new materials in condensed matter physics.

PressureTuned Classical–Quantum Crossover in Magnetic FieldInduced Quantum Phase Transitions of a TriangularLattice Antiferromagnet
Crossdisciplinary physics and related areas of science and technology
Electron states in condensed matter
Magnetic properties in condensed matter
202495
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.

Discovery of LightInduced Mirror Symmetry Breaking
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
202492
The authors discovered the lightinduced mirror symmetry breaking, paving the way for controlling mirror symmetries via light and for realizing various phenomena utilizing the mirror symmetry breaking.