Antisymmetric Exchange Interaction Selects the Cycloidal Helicity: Observation by Resonant X-ray Diffraction
© The Physical Society of Japan
This article is on
Helicity Selection of the Cycloidal Order in Noncentrosymmetric EuIrGe3
J. Phys. Soc. Jpn.
92,
083701
(2023)
.
The unique sense of rotation of the cycloidal magnetic order was clarified in noncentrosymmetric EuIrGe3 by using circularly polarized resonant x-ray diffraction.
In crystals lacking space inversion symmetry, antisymmetric exchange interactions can arise, which are generally expressed in the form of D • (Si x Sj). In normal magnetic ordering by symmetric exchange interactions of the form J Si•Sj, the magnetic moments are aligned parallel or antiparallel to each other into a collinear structure. However, when the antisymmetric exchange is active, the magnetic moments experience a twisting force, resulting in various types of spiral magnetic orderings. The twisting nature of exchange interactions has recently attracted considerable attention because it often generates nontrivial emergent magnetic structures such as chiral soliton lattices and magnetic skyrmion lattices. They are the crystallization of particle-like spin-swirling objects composed of spiral magnetic modulation waves with a single sense of rotation (helicity), which is considered to be the source of topological stability. Therefore, it is important to observe the helicity of the component waves.
The experimental observation of the magnetic helicity is challenging. Although polarized neutron diffraction is a powerful technique, it requires a delicate instrumental setup. In addition, it is unsuitable for samples that contain neutron-absorbing elements such as Eu and Gd. In this study, we employed resonant X-ray diffraction using a synchrotron radiation photon source. We used a diamond phase-retarder system inserted in the incident beam path to manipulate the incident polarization to left- and right-handed circularly polarized states, which have direct sensitivity to the magnetic helicity through different scattering cross-sections for the opposite sense of rotation. We applied a phase-retarder scan to observe the cycloidal ordering in the noncentrosymmetric magnet EuIrGe3, with four mirror reflection planes including the four-fold c-axis.
The cycloidal ordering is characterized by a propagation vector (δ, δ, 0.8), where δ=0.012 at 2.0 K. The Fourier component for this structure is either (1, 1, i√2) or (1, 1, - i √2), where the sign is related to the cycloidal helicity. Furthermore, there arise four magnetic domains described by (δ, δ, 0.8), (-δ, δ, 0.8), (-δ, -δ, 0.8), and (δ, -δ, 0.8). The helicities of all the four domains were measured.
The helicities perfectly reflected the C4v symmetry of the crystal structure. All four Fourier components were related by the 90° rotations and by the mirror reflections. This result clearly shows that the helicity of the cycloid is uniquely selected by the antisymmetric interactions. We believe that this method can be widely applied to the helicity measurements of various types of spiral magnetic systems.
(Written by T. Matsumura on behalf of all the authors.)
Helicity Selection of the Cycloidal Order in Noncentrosymmetric EuIrGe3
J. Phys. Soc. Jpn.
92,
083701
(2023)
.
Share this topic
Fields
Related Articles
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.
-
Chiral Gauge Field and Topological Magnetoelectric Response in Fully Spin-Polarized Magnetic Weyl Semimetal Co3Sn2S2
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024-11-1
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co3Sn2S2, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.
-
Electricity Provides Cooling
Cross-disciplinary physics and related areas of science and technology
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2024-10-15
Electric cooling at low temperatures is successfully achieved using a ferroelectric ferromagnetic solid instead of refrigerant gases such as fluorocarbons. -
Pressure-Tuned Classical–Quantum Crossover in Magnetic Field-Induced Quantum Phase Transitions of a Triangular-Lattice Antiferromagnet
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Magnetic properties in condensed matter
2024-9-5
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.
-
Unification of Spin Helicity in the Magnetic Skyrmion Lattice of EuNiGe3
Magnetic properties in condensed matter
2024-8-7
In the magnetic skyrmion lattice of non-centrosymmetric EuNiGe3, the original magnetic helicity, determined by the antisymmetric exchange interaction, is reversed, resulting in a unified helicity.