Ultra Purification Unveils the Intrinsic Nature in Spin-Triplet Superconductor UTe2
© The Physical Society of Japan
This article is on
Large Reduction in the a-axis Knight Shift on UTe2 with Tc = 2.1 K
J. Phys. Soc. Jpn.
92,
063701
(2023)
.
Microscopic spin-susceptibility measurements in ultra-pure UTe2 samples reveal that superconducting symmetry is analogous to the superfluidity of the 3He B-phase and that U deficiency has a significant impact on superconducting properties.
Superconductivity is a coherent quantum-mechanical state formed by electron pairs. Superconducting order parameters can be described using combinations of spin and orbital states. Although there are no spin degrees of freedom in the spin-singlet superconducting state, unique properties such as multiple superconducting states and spin rotation of a superconducting pair are expected in the spin-triplet superconducting state, owing to the presence of spin degrees of freedom. However, almost all discovered superconductors belong to the spin-singlet superconductors, with only a few spin-triplet superconductors reported thus far.
In 2018, superconductivity in UTe2 was discovered. UTe2 was initially classified as a spin-triplet superconductor owing to similarities with U-based ferromagnetic superconductors with spin-triplet pairing. In fact, characteristic features of the spin-triplet superconductor, such as an extremely large upper critical field Hc2 and superconducting multiple phases, were observed in UTe2. In NMR measurements, our group obtained various results confirming the spin-triplet state.
In 2022, a significant improvement in sample quality was achieved by changing the synthesis method from chemical-vapor-transport to molten-salt flux method. The new samples showed an increase in Tc from 1.6 to 2.1 K. The residual specific heat coefficient at T → 0, which was approximately half of the normal-state value in the 1.6 K sample, was nearly zero in the 2.1 K sample, indicating the ultra-pure nature of the 2.1 K sample.
To elucidate the intrinsic superconducting symmetry of UTe2, we performed NMR measurements on the 2.1 K sample. Because of the Meissner effect, bulk magnetization measurements cannot be used to determine spin susceptibility in the superconducting state; hence, NMR measurements are the only technique used. The results of NMR measurements for magnetic fields along three crystal axes revealed that the spin susceptibility in the a axis, which did not decrease in the 1.6 K samples, decreased significantly in the 2.1 K samples. However, the spin susceptibility in the b and caxes remained approximately the same as that in the 1.6 K samples. The results in the 2.1 K sample suggest that the possible superconducting state is the spin-triplet Au state, which is the same pairing state as the superfluidity 3He B-phase. This superconducting state is a strong candidate for the topological superconductor, in which the Majorana surface state is anticipated.
Our findings highlight the importance of ultra-pure samples for investigating the essential behavior of superconductivity.
(written by H. Matsumura on behalf of all authors.)
Large Reduction in the a-axis Knight Shift on UTe2 with Tc = 2.1 K
J. Phys. Soc. Jpn.
92,
063701
(2023)
.
Share this topic
Fields
Related Articles
-
Shaping the Future of Materials Science with Tanabe–Sugano Diagrams
Dielectric, optical, and other properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
2025-1-21
This special collection published in the Journal of the Physical Society of Japan celebrates 70 Years of Tanabe–Sugano Diagrams, highlighting their continued role in advancing materials with transition metals.
-
Unlocking Secrets of Novel Charge-Orbital States in Transition-Metal Compounds
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-6
A new Special Topics edition of the Journal of the Physical Society of Japan features articles exploring special transition-metal compounds that exhibit novel charge-orbital states.
-
A New Method for Probing Hidden Multipoles in Crystal Field Quartet Using Ultrasonic Waves
Magnetic properties in condensed matter
2024-12-16
A new method of acoustically driven resonance is proposed to unveil the multipole degrees of freedom of a crystal-field quartet and demonstrate the realization of spin acoustic control.
-
Towards Next Generation Magnetic Storage: Magnetic Skyrmions in EuPtSi
Magnetic properties in condensed matter
2024-12-10
This study explores the magnetic behavior of rare-earth magnet EuPtSi using single-crystal neutron diffraction, potentially revealing magnetic skyrmion lattice formation.
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.