Phosphorous-Based Zintl Compounds as Viable Semimetals
© The Physical Society of Japan
This article is on
High-Pressure Synthesis of a Massive and Non-Symmorphic Dirac Semimetal Candidate MoP4
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
90,
123704
(2021)
.
A black-phosphorus-derived Zintl compound, MoP4, is obtained by high-pressure synthesis. The material exhibits a non-quadratic large magnetoresistance and semi-metallic Seebeck behavior, as predicted by the first principles calculations yielding massive and non-symmorphic Dirac semimetal states.
Topological materials, which have non-trivial geometrical properties in their band structures, have attracted attention owing to their exotic quantum transport phenomena and applications to ultrafast and low-power-consumption devices. Dirac electron systems, such as graphene, are a typical example. To exploit the quantum properties inherent in Dirac electronic materials and to advance their functionality, a system that facilitates chemical band engineering is desirable. However, the relationship between the momentum-space topological band structure and the real-space crystal structure is generally not self-evident, and an ideal system to explore such a relationship has yet to be reported.
To realize topological semimetal states, band inversion between the valence and conduction bands is required. To realize such band structures, the authors focused on phosphorus-based Zintl compounds. Zintl compounds are materials consisting of nonmetallic elements. They form covalent polyanion clusters, and metal cations; hence, the crystals have an intermediate character between ionic and covalent crystals. The key feature is that the octet rule is satisfied in the polyanion clusters by receiving electrons from the metal cations and forming lone electron pairs, thereby tending to yield semiconducting or semi-metallic electronic structures.
The authors have successfully performed high-pressure synthesis of single-crystal and polycrystalline MoP4, a Zintl compound with a layered structure derived from black phosphorus, and they found that this system is a promising platform for exploring new topological semimetals. In the high-quality polycrystalline sample, a non-quadratic large positive magnetoresistance was observed at low temperatures, and a sign change from positive to negative in the Seebeck coefficient was observed with decreasing temperature, suggesting that MoP4 is a semimetal with high mobility electron carriers. First principles calculations using refined single-crystal structure parameters revealed that a Dirac-semimetal-like band dispersion consisting of Mo-4d and phosphorus-3p orbitals is realized near the Fermi level and is responsible for the high mobility electron carriers.
This presents a general case that the topological electronic structure can be generated and controlled on a real-space basis through hybridization of the valence orbital of the metal cation inserted between the phosphorus polyanion layers and the p-orbital of phosphorus. Because MP4can encapsulate various transition metal ions other than Mo2+, such as Cr2+ and W2+, the design and development of phosphorus-based Dirac materials with various functions optimized via chemical substitution are expected to advance in the future.
Material design focusing on black phosphorus, a well-known high mobility semiconductor and Dirac semimetal candidate, is expected to be a promising guideline for the strategic development of topological materials based on structure-function relationships.
(Written by A. H. Mayo on behalf of all authors)
High-Pressure Synthesis of a Massive and Non-Symmorphic Dirac Semimetal Candidate MoP4
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
90,
123704
(2021)
.
Share this topic
Fields
Related Articles
-
Shaping the Future of Materials Science with Tanabe–Sugano Diagrams
Dielectric, optical, and other properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
2025-1-21
This special collection published in the Journal of the Physical Society of Japan celebrates 70 Years of Tanabe–Sugano Diagrams, highlighting their continued role in advancing materials with transition metals.
-
How to Construct a 3D Dirac Semimetal by Stacking 2D Massless Dirac Fermion Layers
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
2025-1-14
Interlayer spin–orbit coupling originating from the anion potential gives rise to a 3D Dirac semimetal state that preserves inversion symmetry in the multilayer organic massless Dirac fermion system α-(ET)2I3.
-
Unlocking Secrets of Novel Charge-Orbital States in Transition-Metal Compounds
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-6
A new Special Topics edition of the Journal of the Physical Society of Japan features articles exploring special transition-metal compounds that exhibit novel charge-orbital states.
-
The Stiffness of Electronic Nematicity
Dielectric, optical, and other properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
2024-11-21
Using laser-excited photoelectron emission microscope (laser-PEEM) we found that the nematic stiffness in iron-based superconductors significantly increases as the systems become strange metals, suggesting that spin–orbital fluctuations enhance the stiffness of electronic nematicity.
-
Imaging Atomic Displacement in BaTiO3 with Neutron Holography
Measurement, instrumentation, and techniques
Structure and mechanical and thermal properties in condensed matter
2024-11-7
Newly developed neutron holography was applied to ferroelectric BaTiO3 to evaluate oxygen displacement, providing important structural information for improving the ability of dielectric materials to store electricity.