Exploring the Thermoelectric Properties of Nitrogen-doped Carbon Nanotubes
© The Physical Society of Japan
This article is on
Optimal Thermoelectric Power Factor of Narrow-Gap Semiconducting Carbon Nanotubes with Randomly Substituted Impurities
J. Phys. Soc. Jpn.
90,
044702
(2021)
.
A semiconducting carbon nanotube doped with an optimal concentration of nitrogen delivered a thermoelectric power substantially higher than that delivered by commercial Bi2Te3 alloys.

Thomas Johann Seebeck discovered the thermoelectric (TE) conversion from heat to electrical energy just 200 years ago. Recently, high-performance TE materials have attracted research interest as energy-harvesting technologies. Most of the experimentally discovered TE materials are impurity-doped semiconductors i.e., disordered systems. High-TE effects are expected near the band edge in the impurity-doped semiconductors, where the electronic states are under the influence of strong impurity scattering not properly treated by the conventional Boltzmann transport theory (BTT). Therefore, it is necessary to develop a sophisticated theory beyond BTT. Recently, the authors (T.Y. and H.F.) have alleviated this drawback using the linear response theory (Kubo–Luttinger formula) in conjunction with the thermal Green's function technique [1–3].
The TE linear response theory was successfully applied to nitrogen-doped semiconducting carbon nanotubes (N-CNTs) in the present study. The N-CNTs functioned as lightweight, flexible, and high-performance TE materials. The power factor, PF (=L11S2), was dependent on the nitrogen concentration, c (up to 10-2), per unit cell of a CNT at various temperatures. The electrical conductivity and Seebeck coefficient were designated as L11 and S, respectively. The PF increased with a decrease in c at 300 K. When cdecreased to less than the optimal impurity concentration, copt (= 3.1×10-5), the PF started to decrease. This behavior was explained based on L11 and S, considering the c-dependence of the chemical potential, μ. The μ at c = 10-3located below the donor level formed via nitrogen doping, and the electrons were thermally excited from the donor level to conduction band. The μ level shifted downward with a decrease in c owing to a decrease in the net carrier density of the N-CNTs. Here, |S| increased with a decrease in c. A decrease in c, corresponding to a decrease in the rate of scattering by the impurities, was accompanied by an increase in L11owing to the electrons in the conduction band. Consequently, the PFincreased with a decrease in c. A further lowering of c promoted the asymptotic approach of μ toward the center of the band gap owing to the thermally excited holes. The holes contributed to an increase in L11; however, |S| decreased rapidly because the hole contribution to S cancels out the electron contribution to S. Therefore, the PF started to decrease below copt. These results facilitated successful estimation of the optimal nitrogen concentration to maximize the PF at various temperatures. A PF of 0.30 W/K2m was obtained for copt at 300 K, which is significantly higher than the PF of commercial Bi2Te3alloys. These theoretical predictions will facilitate the development of new materials with optimal TE performances.
(written by M. Matsubara on behalf of all authors)
References
[1] T. Yamamoto and H. Fukuyama, J. Phys. Soc. Jpn. 87, 024707 (2018).
[2] T. Yamamoto and H. Fukuyama, J. Phys. Soc. Jpn. 87, 114710 (2018).
[3] M. Ogata and H. Fukuyama, J. Phys. Soc. Jpn. 88, 074703 (2019).
Optimal Thermoelectric Power Factor of Narrow-Gap Semiconducting Carbon Nanotubes with Randomly Substituted Impurities
J. Phys. Soc. Jpn.
90,
044702
(2021)
.
Share this topic
Fields
Related Articles
-
Ferroaxial Order: Visualizing Domain States with Chirality Induced by an Applied Electric Field
Dielectric, optical, and other properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-7-7
Ferroaxial domains were visualized in the glaserite-type compound Na2BaM(PO4)2 (M = divalent metal) using the linear electrogyration effect with polarization microscopy combined with a field-modulation imaging technique.
-
Is Quantum Turbulence Enhanced by Normal-Fluid Turbulence?
Electromagnetism, optics, acoustics, heat transfer, and classical and fluid mechanics
Structure and mechanical and thermal properties in condensed matter
2025-7-1
The coupled dynamics between quantum turbulence and normal-fluid turbulence is investigated via advanced numerical simulations. Our simulations show that quantum turbulence can be enhanced by normal-fluid turbulence through internal mutual friction.
-
Metallising the Mott Insulator Ca2RuO4 Takes Time—Just Like Ageing Fine Whisky in a Cask
Electronic transport in condensed matter
2025-6-24
Ion gating on the surface of the Mott insulator Ca2RuO4 induces the progression of metallisation into the bulk interior without the influence of the current flow.
-
Electrons and Phonons in Chiral Crystals: Angular Momentum along Twisting Paths in Helical Structures
Electron states in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-6-10
This study shows electrons interact with chiral phonons via crystal angular momentum, revealing a new angular momentum transfer mechanism and advancing quantum dynamics understanding in chiral materials.
-
Effect of Moiré Pattern on the Phonon Thermal Transport of Two-Dimensional Materials
Structure and mechanical and thermal properties in condensed matter
2025-5-26
In bilayer materials, moiré patterns reduce the phonon velocity, thus reducing the overall thermal conductivity, with a characteristic temperature dependence, at low temperatures.