Topological Properties of the Periodic Toda Lattice: Analogy with the Thouless Pump
© The Physical Society of Japan
This article is on
Chern Numbers Associated with the Periodic Toda Lattice
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
92,
073001
(2023)
.
We find that the periodic Toda lattice belongs to the same topological class as the Thouless pump.
The Toda lattice discovered by Morikazu Toda in 1967 is a one-dimensional lattice model with an exponential-type interaction. Despite the nonlinear interaction, the Toda lattice is completely integrable. The Lax equation introduced by Flaschka in 1974, which is a matrix format of the canonical equations of motion, has led to the proof of the integrability. In 1976, Date and Tanaka obtained generic periodic solutions of the Toda lattice using the eigenvalues of the Lax matrix.
On the other hand, the Thouless pump introduced by Thouless in 1983 is a quantum pump that transports particles in periodically and adiabatically moving potentials. The Thouless pump is often called the topological pump, because the number of transported particles in one period is quantized, given by a topological invariant known as the Chern number.
In our study, we shed light on the topological properties of the periodic Toda lattice. At first glance, the Toda lattice appears to be unrelated to the Thouless pump. However, in 1993, Hatsugai has established the theory of the bulk-edge correspondence (BEC) in topological phenomena in condensed matter physics, based on the techniques developed by Date and Tanaka. Conversely, in the study, we have reconsidered the Lax eigenvalue equation of the Toda lattice from the viewpoint of the BEC. Namely, we have first confirmed that the boundary states that play a crucial role in obtaining the exact solutions of the Toda lattice, have a topological origin. In the spirit of the BEC, we have subsequently shown that the bulk eigenfunctions of the Lax matrix on the periodic Toda lattice yield nontrivial Chern numbers. In particular, the cnoidal wave solution derived by Toda exhibits a Chern number of -1. This implies that the periodic Toda lattice belongs to the same topological class as the Thouless pump.
This result shows that a topological viewpoint can be useful in the study of solvable models of nonlinear waves. As is widely known, solitons are not topologically protected but are due to the balance between nonlinearity and dispersion in the wave propagation. Our result suggests that the topological properties of the Toda lattice may be involved in the stability of solitons. Investigating whether other solvable models of nonlinear waves have the same topological properties will be noteworthy.
(Written by K. Sato and T. Fukui)
Chern Numbers Associated with the Periodic Toda Lattice
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
92,
073001
(2023)
.
Share this topic
Fields
Related Articles
-
The Stiffness of Electronic Nematicity
Dielectric, optical, and other properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
2024-11-21
Using laser-excited photoelectron emission microscope (laser-PEEM) we found that the nematic stiffness in iron-based superconductors significantly increases as the systems become strange metals, suggesting that spin–orbital fluctuations enhance the stiffness of electronic nematicity.
-
A Promising Solution to Nucleon–Nucleon Inverse Scattering Problem
General and Mathematical Physics
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Nuclear physics
2024-10-7
This study deals with the inverse elastic two-body quantum scattering problem using Volterra approximations and neural networks, offering a novel approach for solving complex nonlinear systems.
-
A New Method for Finding Bound States in the Continuum
General and Mathematical Physics
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Nuclear physics
2024-10-1
This study presents a general theory for constructing potentials supporting bound states in the continuum, offering a method for identifying such states in real quantum systems.
-
General Quasi-Joint Probabilities on Finite-State Quantum Systems
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
2024-8-15
This study investigates the properties of general quasi-joint probability distributions in finite-state quantum systems, revealing the Kirkwood-Dirac distribution as among the most favorable. This highlights the importance of complex distributions in understanding quantum probability.
-
Antiferromagnetism Induces Dissipationless Transverse Conductivity
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024-7-24
An investigation using high-quality NbMnP crystals demonstrates that the anomalous Hall conductivity arising from antiferromagnetism is dissipationless, as expected from the intrinsic mechanism.