Self-Energy Singularity Explains High-Temperature Superconductivity in Cuprates
© The Physical Society of Japan
This article is on
J. Phys. Soc. Jpn.
92,
092001
(2023)
.
A new review discusses the high-temperature superconductivity mechanisms in copper oxides, explaining the various phases observed in these materials based on a nonperturbative effect called self-energy singularity.
Superconductivity is the property of certain materials to conduct electricity with no energy losses when cooled below a critical temperature. The discovery of high-temperature copper oxide (or cuprate) superconductors, whose critical temperatures reach about 160 K, has unlocked various potential applications.
However, the mechanisms driving the high-temperature superconductivity are not fully understood, primarily due to challenges in dealing with the electron–electron interactions within the materials. Spectroscopic experiments and nonperturbative theories have been used to explain the high-temperature superconductivity in cuprates.
Recently, in a new study published in the Journal of the Physical Society of Japan , researcher Shiro Sakai from the Center for Emergent Matter Science at RIKEN, Japan, reviewed the results of these studies, highlighting that superconductivity in cuprates can be explained by the existence of a self-energy singularity.
The singular self-energy, described as a nonperturbative effect, arises from strong correlations between electrons. Referred to as the ‘missing link,’ the self-energy singularity offers a unifying explanation for the various phases observed in cuprates as well as for a number of experimental observations that have been considered ‘anomalies’ and remain poorly understood.
Cuprates exhibit superconductive properties only within a doping range of 5–25%. At lower doping, hole-doped cuprates behave as Mott insulators, while at higher doping, they show a Fermi-liquid behavior. Additionally, in the underdoped regions lying above the critical temperature, an enigmatic pseudogap state emerges.
It is known that the singular self-energy exists in the Mott insulating state, where it generates a spectral gap. On top of that, nonperturbative calculations have revealed its presence in the finite-doping region as well, where it enhances the superconductivity transition temperature and generates the pseudogap above it.
Therefore, the self-energy singularity is at the origin of the high-temperature superconductivity, the pseudogap, and the Mott insulator phases in cuprates. This review thus sheds light on the complex nature of cuprates, paving the way for the design and discovery of new superconductors with higher critical temperatures.
J. Phys. Soc. Jpn.
92,
092001
(2023)
.
Share this topic
Fields
Related Articles
-
S-Wave Spin Splitting Drives Unconventional Piezomagnetism in an Organic Altermagnet
Electron states in condensed matter
Magnetic properties in condensed matter
2025-10-21
This work provides a theoretical demonstration of piezomagnetic effects in an organic altermagnet, arising from strain-induced asymmetries in exchange interactions and orbital degrees of freedom, thereby revealing new opportunities for organic spintronics.
-
A General Formula for Orbital Magnetic Susceptibility in Solids
Electron states in condensed matter
Magnetic properties in condensed matter
Statistical physics and thermodynamics
2025-9-12
This study identifies physical processes behind the simple unified formula for orbital magnetic susceptibility in solids, including contributions from four different sources, offering new insights into the understanding of the nature of Bloch electrons in magnetic field.
-
Exotic Superconductivity in Altermagnets with Rashba Spin–Orbit Coupling
Superconductivity
2025-8-6
We theoretically demonstrate the emergence of finite-momentum superconductivity in a two-dimensional altermagnet with Rashba-type spin–orbit coupling (RSOC), where anisotropic deformations of the Fermi surfaces stabilize this unconventional superconducting state.
-
Electrons and Phonons in Chiral Crystals: Angular Momentum along Twisting Paths in Helical Structures
Electron states in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-6-10
This study shows electrons interact with chiral phonons via crystal angular momentum, revealing a new angular momentum transfer mechanism and advancing quantum dynamics understanding in chiral materials.
-
Superconducting Diode Using Semiconductor Quantum Dots
Electronic structure and electrical properties of surfaces and nanostructures
Superconductivity
2025-6-5
The superconducting diode effect is proposed for a three-terminal semiconductor double-quantum-dot device. This effect is considerably enhanced by the Dirac-point singularities in the superconducting phase space.
