Heavy Fermion Meets Antiferromagnetic Sea
© The Physical Society of Japan
This article is on
Possible Heavy-Fermion State in PT-Symmetric Antiferromagnet CeMnSi
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
92,
044703
(2023)
.
CeMnSi exhibits heavy fermion behaviors in an antiferromagnetically ordered state of Mn.
The space-time inversion symmetry inherent in the ordered state is key for the unique electron state.
Symmetries are widespread in nature. For instance, planetary motion is related to the conservation of angular momentum owing to rotational symmetry. In general, symmetries have important implications for physics, and new concepts based on symmetries open up new frontiers of research.
Crystals are one of the research objects in condensed matter physics, and have innumerable atoms arranged periodically with symmetries, including rotation, mirror, and inversion. Space-inversion (P) symmetry is of importance for physical properties; however, it is not always present in crystals. Magnetic ordering, a familiar example of spontaneous symmetry breaking in electron systems, may break P-symmetry depending on the spatial arrangement of electron spins even if the symmetry is innately given. Magnetic ordering itself also breaks time-reversal (T) symmetry owing to the nature of electron spin, as in the Zeeman effect. We investigate how electrons behave in crystal, and thereby know which symmetries are broken.
CeMnSi is a tetragonal intermetallic compound with P-symmetry, and has two magnetic elements: Ce and Mn. The spin degrees of freedom of their unpaired electrons must be frozen at low temperatures in some way according to a thermodynamic requirement. As for Mn, the way is an antiferromagnetic (AFM) ordering with an antiparallel spin arrangement. Consequently, the innate P-symmetry is broken, while the space-time inversion (PT) symmetry, a combination of P and T symmetries, is preserved. Hence, CeMnSi is classified as a PT-symmetric antiferromagnet.
As for Ce, there is no spontaneous magnetic ordering. However, this is not so surprising for Ce-based intermetallics because they have another way for the freezing, the Kondo coupling with conduction electrons. In this case, unpaired Ce-4f electrons become nonmagnetic below a characteristic temperature, and a correlated electron state called the heavy fermion state is realized. The most salient feature of the heavy fermion state in CeMnSi is the presence of the Mn-AFM ordering; heavy fermion states normally appear in paramagnetic state. In other words, CeMnSi provides a place where heavy fermion meets an “AFM sea”. The spin degeneracy protected by the PT-symmetry inherent in the Mn-AFM ordering would be crucial for the unique heavy fermion state in CeMnSi beyond the usual heavy fermion picture. The microscopic mechanisms need to be clarified by theoretical and further experimental studies.
(written by H. Tanida on behalf of all authors.)
Possible Heavy-Fermion State in PT-Symmetric Antiferromagnet CeMnSi
(JPSJ Editors' Choice)
J. Phys. Soc. Jpn.
92,
044703
(2023)
.
Share this topic
Fields
Related Articles
-
Chiral Gauge Field and Topological Magnetoelectric Response in Fully Spin-Polarized Magnetic Weyl Semimetal Co3Sn2S2
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024-11-1
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co3Sn2S2, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.
-
Electricity Provides Cooling
Cross-disciplinary physics and related areas of science and technology
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2024-10-15
Electric cooling at low temperatures is successfully achieved using a ferroelectric ferromagnetic solid instead of refrigerant gases such as fluorocarbons. -
Pressure-Tuned Classical–Quantum Crossover in Magnetic Field-Induced Quantum Phase Transitions of a Triangular-Lattice Antiferromagnet
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Magnetic properties in condensed matter
2024-9-5
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.
-
Unification of Spin Helicity in the Magnetic Skyrmion Lattice of EuNiGe3
Magnetic properties in condensed matter
2024-8-7
In the magnetic skyrmion lattice of non-centrosymmetric EuNiGe3, the original magnetic helicity, determined by the antisymmetric exchange interaction, is reversed, resulting in a unified helicity.
-
Antiferromagnetism Induces Dissipationless Transverse Conductivity
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024-7-24
An investigation using high-quality NbMnP crystals demonstrates that the anomalous Hall conductivity arising from antiferromagnetism is dissipationless, as expected from the intrinsic mechanism.