Thermoelectric Response in Strongly Disordered Systems
© The Physical Society of Japan
This article is on
J. Phys. Soc. Jpn.
91,
044704
(2022)
.
Based on the Kubo–Luttinger linear response theory, we discovered that the lowT Seebeck coefficient for Mott variablerange hopping in a ddimensional system varies as S ∝ T^{d}^{/(d+1)}, which is different from the conventional S ∝ T^{(}^{d}^{−1)/(}^{d}^{+1)}. In addition, the experimental data for S of CuCrTiS_{4} at low T are in excellent agreement with our prediction S ∝ T^{3/4} (d = 3).
In 1957, Kubo established the linear response theory to kinetic perturbation (e.g., electric or magnetic field). In the following years, based on the combination of the thermal Green's function technique with the Kubo formula, the linear response theory has emerged as a powerful practical tool for analyzing quantum transport and the magnetic response of materials. In contrast, the linear response theory to thermodynamic perturbation (e.g., temperature gradient) was advocated by Luttinger in 1964. Luttinger succeeded in treating the temperature gradient as a kinetic perturbation by introducing a fictitious gravitational field (scalar field). Since 2018, the authors and their coworkers have been developing the Luttinger formula together with the thermal Green's function technique to determine the thermal response (i.e., thermoelectric (TE) effect and thermal transport) of materials from a quantum mechanical perspective. The developed technique has been successfully applied to various materials exhibiting interesting TE effects that cannot be explained in terms of the Boltzmann transport theory (BTT).
In this study, as a typical thermal response beyond the BTT framework, the authors investigated the TE response in Mott variablerange hopping (VRH) using the abovementioned Kubo–Luttinger (KL) theory together with the thermal Green's function technique. By incorporating the energy dependence of the localization length near the mobility edge based on the scaling theory of Anderson localization, we clarified that the Seebeck coefficient S(T) varies according to S ∝ T^{d}^{/(d+1)} in a ddimensional system, which is different from the widely used Mott–Davis expression, S ∝ T^{(d−1)/(d+1)}, based on the energyindependent localization length. In addition, we demonstrated that the lowT behavior of S(T) for thiospinel CuCrTiS_{4}, which is known as a typical TE material exhibiting Mott VRH at low T, is in complete agreement with our theoretical prediction S ∝ T^{3/4} (d = 3).
This study enables precise prediction of the performance of disordered TE materials exhibiting Mott VRH. The development of such a complete quantum theory that precisely predicts TE properties will play a role in realizing a sustainable society.
(Written by T. Yamamoto on behalf of all the authors.)
J. Phys. Soc. Jpn.
91,
044704
(2022)
.
Share this topic
Fields
Related Articles

Chiral Gauge Field and Topological Magnetoelectric Response in Fully SpinPolarized Magnetic Weyl Semimetal Co_{3}Sn_{2}S_{2}
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024111
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co_{3}Sn_{2}S_{2}, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.

Discovery of LightInduced Mirror Symmetry Breaking
Dielectric, optical, and other properties in condensed matter
Electronic transport in condensed matter
202492
The authors discovered the lightinduced mirror symmetry breaking, paving the way for controlling mirror symmetries via light and for realizing various phenomena utilizing the mirror symmetry breaking.

Discovery of Unconventional PressureInduced Superconductivity in CrAs
Electronic transport in condensed matter
Superconductivity
2024813
A new study has discovered pressureinduced superconductivity in the helimagnet CrAs, originating in the vicinity of the helimagnetic ordering, representing the first example of superconductivity in Crbased magnetic systems.

Antiferromagnetism Induces Dissipationless Transverse Conductivity
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024724
An investigation using highquality NbMnP crystals demonstrates that the anomalous Hall conductivity arising from antiferromagnetism is dissipationless, as expected from the intrinsic mechanism.

Exploring Electronic States in BEDTTTF Organic Superconductors
Electronic transport in condensed matter
Magnetic properties in condensed matter
Superconductivity
2024424
This review, published in the Journal of the Physical Society of Japan, provides a comprehensive summary of the electronic states observed in BEDTTTF type organic superconductors, including metalinsulator transitions, Mottness transitions, nonFermi liquids, quantum spin liquids, and BoseEinstein condensation.