Spin-Wave Dynamics in Antiferromagnets under Electric Current
© The Physical Society of Japan
This article is on
J. Phys. Soc. Jpn.
90,
103705
(2021)
.
Electric current causes a Doppler effect in spin waves in ferromagnets through a spin-transfer torque. We report that antiferromagnets allow two such spin-transfer torques and present a microscopic analysis that interpolates ferro- and antiferromagnetic transport regimes.
Investigating the effect of electric current on magnetic materials is crucial in spintronics. In ferromagnets, electric currents are known to drive domain-wall motion and cause a Doppler shift in the spin-wave spectrum. These phenomena, known as the spin-transfer effect, can be understood as the exchange of spin angular momentum between magnetization and conduction electrons. In antiferromagnets, neither the conduction electrons nor antiferromagnetic spins carry macroscopic spin angular momentum, and the spin-transfer effect is not intuitively understood, calling for a microscopic analysis.
It was long supposed that there is only one (reactive) spin-transfer torque in antiferromagnets, as in ferromagnets. In this study, starting from a microscopic Hamiltonian with conduction electrons, we show that antiferromagnets have two different types of spin-transfer torques: one arising through the coupling to the uniform spin density ( ) and the other through the staggered spin density ( ). The two spin-transfer torques make equal contributions of to the spin-wave Doppler shift, while only one ( ) acts on domain walls [1]. This feature is in stark contrast to ferromagnets, in which a single spin-transfer torque leads to both Doppler shift and domain-wall motion. The Doppler shift depends on chirality of antiferromagnetic magnons, thus an electric current can be used to differentiate the two modes via the shift in wavelength or frequency.
We microscopically calculated the spin-transfer torques due to electrons on a two-dimensional square lattice by considering not only the nearest-neighbor (inter-sublattice) hopping but also the next-nearest-neighbor (intra-sublattice) hopping; the former induces “antiferromagnetic transport” in the sense that the electrons feel the alternating magnetization, whereas the latter induces “ferromagnetic transport,” rendering the electrons feel a uniform magnetization. One can interpolate the two transport regimes (ferromagnetic and antiferromagnetic) by varying the hopping parameters. In the limit of ferromagnetic transport, the two spin-transfer torques reduce to the well-known spin-transfer torque in a ferromagnet. In the antiferromagnetic transport regime, the two torques collaborate or compete, and the overall Doppler shift depends on microscopic parameters (such as band filling); it is negative (same sign as for ferromagnets) at small band filling and changes sign as the lower band becomes filled towards the antiferromagnetic band gap.
[1] J. J. Nakane and H. Kohno, Phys. Rev. B 103, L180405 (2021).
(Written by J. Nakane on behalf of all authors)
J. Phys. Soc. Jpn.
90,
103705
(2021)
.
Share this topic
Fields
Related Articles
-
The Stiffness of Electronic Nematicity
Dielectric, optical, and other properties in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Electronic transport in condensed matter
2024-11-21
Using laser-excited photoelectron emission microscope (laser-PEEM) we found that the nematic stiffness in iron-based superconductors significantly increases as the systems become strange metals, suggesting that spin–orbital fluctuations enhance the stiffness of electronic nematicity.
-
Revival of JRR-3: A New Frontier in Neutron Scattering Research
Cross-disciplinary physics and related areas of science and technology
Elementary particles, fields, and strings
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
Nuclear physics
2024-11-12
This Special Topics edition of JPSJ details the capabilities and upgrades made to the instruments at JRR-3, since its shutdown after the Great East Japan Earthquake and 2011.
-
Chiral Gauge Field and Topological Magnetoelectric Response in Fully Spin-Polarized Magnetic Weyl Semimetal Co3Sn2S2
Electronic transport in condensed matter
Magnetic properties in condensed matter
2024-11-1
This study clarifies the relationship between magnetic ordering and chiral gauge fields in the ferromagnetic Weyl semimetal Co3Sn2S2, highlighting its spintronic potential using the topological magnetoelectric responses of Weyl fermions.
-
Electricity Provides Cooling
Cross-disciplinary physics and related areas of science and technology
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2024-10-15
Electric cooling at low temperatures is successfully achieved using a ferroelectric ferromagnetic solid instead of refrigerant gases such as fluorocarbons. -
Pressure-Tuned Classical–Quantum Crossover in Magnetic Field-Induced Quantum Phase Transitions of a Triangular-Lattice Antiferromagnet
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Magnetic properties in condensed matter
2024-9-5
The correspondence principle states that as quantum numbers approach infinity, the nature of a system described by quantum mechanics should match that described by classical mechanics. Quantum phenomena, such as quantum superposition and quantum correlation, generally become unobservable when a system approaches this regime. Conversely, as quantum numbers decrease, classical descriptions give way to observable quantum effects. The external approach to classical–quantum crossover has attracted research interest. This study aims to demonstrate a method for achieving such control in materials.