Spin-Wave Dynamics in Antiferromagnets under Electric Current
© The Physical Society of Japan
This article is on
J. Phys. Soc. Jpn.
90,
103705
(2021)
.
Electric current causes a Doppler effect in spin waves in ferromagnets through a spin-transfer torque. We report that antiferromagnets allow two such spin-transfer torques and present a microscopic analysis that interpolates ferro- and antiferromagnetic transport regimes.
Investigating the effect of electric current on magnetic materials is crucial in spintronics. In ferromagnets, electric currents are known to drive domain-wall motion and cause a Doppler shift in the spin-wave spectrum. These phenomena, known as the spin-transfer effect, can be understood as the exchange of spin angular momentum between magnetization and conduction electrons. In antiferromagnets, neither the conduction electrons nor antiferromagnetic spins carry macroscopic spin angular momentum, and the spin-transfer effect is not intuitively understood, calling for a microscopic analysis.
It was long supposed that there is only one (reactive) spin-transfer torque in antiferromagnets, as in ferromagnets. In this study, starting from a microscopic Hamiltonian with conduction electrons, we show that antiferromagnets have two different types of spin-transfer torques: one arising through the coupling to the uniform spin density ( ) and the other through the staggered spin density ( ). The two spin-transfer torques make equal contributions of to the spin-wave Doppler shift, while only one ( ) acts on domain walls [1]. This feature is in stark contrast to ferromagnets, in which a single spin-transfer torque leads to both Doppler shift and domain-wall motion. The Doppler shift depends on chirality of antiferromagnetic magnons, thus an electric current can be used to differentiate the two modes via the shift in wavelength or frequency.
We microscopically calculated the spin-transfer torques due to electrons on a two-dimensional square lattice by considering not only the nearest-neighbor (inter-sublattice) hopping but also the next-nearest-neighbor (intra-sublattice) hopping; the former induces “antiferromagnetic transport” in the sense that the electrons feel the alternating magnetization, whereas the latter induces “ferromagnetic transport,” rendering the electrons feel a uniform magnetization. One can interpolate the two transport regimes (ferromagnetic and antiferromagnetic) by varying the hopping parameters. In the limit of ferromagnetic transport, the two spin-transfer torques reduce to the well-known spin-transfer torque in a ferromagnet. In the antiferromagnetic transport regime, the two torques collaborate or compete, and the overall Doppler shift depends on microscopic parameters (such as band filling); it is negative (same sign as for ferromagnets) at small band filling and changes sign as the lower band becomes filled towards the antiferromagnetic band gap.
[1] J. J. Nakane and H. Kohno, Phys. Rev. B 103, L180405 (2021).
(Written by J. Nakane on behalf of all authors)
J. Phys. Soc. Jpn.
90,
103705
(2021)
.
Share this topic
Fields
Related Articles
-
Shaping the Future of Materials Science with Tanabe–Sugano Diagrams
Dielectric, optical, and other properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
2025-1-21
This special collection published in the Journal of the Physical Society of Japan celebrates 70 Years of Tanabe–Sugano Diagrams, highlighting their continued role in advancing materials with transition metals.
-
Unlocking Secrets of Novel Charge-Orbital States in Transition-Metal Compounds
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-6
A new Special Topics edition of the Journal of the Physical Society of Japan features articles exploring special transition-metal compounds that exhibit novel charge-orbital states.
-
Large Thermoelectric Effect in High Mobility Semimetals
Electronic transport in condensed matter
2024-12-23
This study clarifies that the high mobility semimetal Ta2PdSe6 generates large Seebeck and Nernst effects at low temperatures, providing insight for exploring good thermoelectric materials for low-temperature applications.
-
A New Method for Probing Hidden Multipoles in Crystal Field Quartet Using Ultrasonic Waves
Magnetic properties in condensed matter
2024-12-16
A new method of acoustically driven resonance is proposed to unveil the multipole degrees of freedom of a crystal-field quartet and demonstrate the realization of spin acoustic control.
-
Towards Next Generation Magnetic Storage: Magnetic Skyrmions in EuPtSi
Magnetic properties in condensed matter
2024-12-10
This study explores the magnetic behavior of rare-earth magnet EuPtSi using single-crystal neutron diffraction, potentially revealing magnetic skyrmion lattice formation.