Measurements and Implications of Shot Noise in Mesoscopic Systems
© The Physical Society of Japan
This article is on
Shot Noise in Mesoscopic Systems: from Single Particles to Quantum Liquids
J. Phys. Soc. Jpn.
90,
102001
(2021)
.
Shot noise measurements provide rewarding insights into system properties, non-equilibrium phenomena, and quantum effects in mesoscopic systems.
Mesoscopic physics is the study of systems ranging in size from nanoscale to microns. A major focus in mesoscopic physics is studying the quantum nature of electrons and associated correlated effects. One way to do that is by measuring “shot noise,” a noise originating from the discrete nature of electrons. Recently, researchers from The University of Tokyo and NTT Corporation published a review in the Journal of the Physical Society of Japan, detailing advances in shot noise measurements in mesoscopic systems.
Shot noise is often too small to be measured using commercial ammeters, and therefore, requires special experimental techniques for its quantitative evaluation. In their review, the researchers introduce and discuss the characteristics of several measurement techniques as well as explain the theoretical framework to calculate the shot noise.
Shot noise studies have revealed unique information about a system modeled within a single-particle picture. For example, the measurements enable us to evaluate the spin polarization of an electronic current flowing through a mesoscopic solid-state device, such as a quantum point contact. Furthermore, they can be used to explore the quantum Hall effect breakdown, tunnel junction devices, correlated electron transport through quantum dots, and Fermion quantum optics.
Another fascinating aspect of shot noise measurements is that they can also be used to study quantum liquids. In fact, physical phenomena such as the Kondo effect, the fractional quantum Hall effect, and superconductivity show their peculiarity in shot noise properties as well as conductance. Additionally, shot noise could help detect exotic particles like Majorana fermions and non-Abelian anyons that could help us create a fault-tolerant topological quantum computer.
All in all, understanding shot noise is critical not only to the development of quantum physics but also to new technologies.
Shot Noise in Mesoscopic Systems: from Single Particles to Quantum Liquids
J. Phys. Soc. Jpn.
90,
102001
(2021)
.
Share this topic
Fields
Related Articles
-
Fractional Vortex Array with Nontrivial Topological Structure Realized at Twin Boundary of Nematic Superconductor
Superconductivity
2025-3-24
Analysis of the two-component Ginzburg-Landau theory suggests that a conventional vortex is transformed into two fractional vortices with the topological nature of core-down and core-up merons at the twin boundary of a nematic superconductor.
-
Exploring the Vibrant Interplay of Machine Learning and Physics
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Elementary particles, fields, and strings
Mathematical methods, classical and quantum physics, relativity, gravitation, numerical simulation, computational modeling
Statistical physics and thermodynamics
Superconductivity
2025-3-13
This Journal of the Physical Society of Japan Special Topics edition explores how physics and machine learning complement each other and can solve unresolved problems in physics.
-
Understanding Pressure-Induced Superconductivity in CrAs and MnP
Magnetic properties in condensed matter
2025-3-10
This study reviews existing research on the pressure-induced variation of magnetic properties of transition metal mono-pnictides like CrAS, MnP, and others, aiming to understand the unconventional superconductivity observed in CrAs and MnP.
-
A Unified Theory of Topological Hall Effect
Electronic transport in condensed matter
2025-3-6
This paper presents a unified theoretical description for the topological Hall effect, covering the entire region from strong- to weak-coupling, extending its picture beyond the Berry phase.
-
Excitonic Insulators: Challenges in Realizing a Theoretically Predicted State of Matter
Electron states in condensed matter
Electronic transport in condensed matter
2025-3-3
The realization of an excitonic insulator can help in the establishment of a new electronic state in condensed matter physics, one that has the potential to exhibit novel electric, magnetic, and optical responses beyond those of conventional materials.