Measurements and Implications of Shot Noise in Mesoscopic Systems
© The Physical Society of Japan
This article is on
Shot Noise in Mesoscopic Systems: from Single Particles to Quantum Liquids
J. Phys. Soc. Jpn.
90,
102001
(2021)
.
Shot noise measurements provide rewarding insights into system properties, non-equilibrium phenomena, and quantum effects in mesoscopic systems.
Mesoscopic physics is the study of systems ranging in size from nanoscale to microns. A major focus in mesoscopic physics is studying the quantum nature of electrons and associated correlated effects. One way to do that is by measuring “shot noise,” a noise originating from the discrete nature of electrons. Recently, researchers from The University of Tokyo and NTT Corporation published a review in the Journal of the Physical Society of Japan, detailing advances in shot noise measurements in mesoscopic systems.
Shot noise is often too small to be measured using commercial ammeters, and therefore, requires special experimental techniques for its quantitative evaluation. In their review, the researchers introduce and discuss the characteristics of several measurement techniques as well as explain the theoretical framework to calculate the shot noise.
Shot noise studies have revealed unique information about a system modeled within a single-particle picture. For example, the measurements enable us to evaluate the spin polarization of an electronic current flowing through a mesoscopic solid-state device, such as a quantum point contact. Furthermore, they can be used to explore the quantum Hall effect breakdown, tunnel junction devices, correlated electron transport through quantum dots, and Fermion quantum optics.
Another fascinating aspect of shot noise measurements is that they can also be used to study quantum liquids. In fact, physical phenomena such as the Kondo effect, the fractional quantum Hall effect, and superconductivity show their peculiarity in shot noise properties as well as conductance. Additionally, shot noise could help detect exotic particles like Majorana fermions and non-Abelian anyons that could help us create a fault-tolerant topological quantum computer.
All in all, understanding shot noise is critical not only to the development of quantum physics but also to new technologies.
Shot Noise in Mesoscopic Systems: from Single Particles to Quantum Liquids
J. Phys. Soc. Jpn.
90,
102001
(2021)
.
Share this topic
Fields
Related Articles
-
Symmetry and AI: Building the Future of Physics Simulations
Magnetic properties in condensed matter
Measurement, instrumentation, and techniques
2025-2-18
Generative artificial intelligence (AI) has gained considerable attention in scientific fields. By embedding physical symmetry into AI before training, we created a faster and lighter model. Scaling improves the accuracy and unlocks the potential of physics research and applications.
-
Triangular Lattice Magnet GdGa2: Spin Cycloids and Skyrmions
Cross-disciplinary physics and related areas of science and technology
Electronic transport in condensed matter
Magnetic properties in condensed matter
2025-2-3
Careful measurements were conducted on the hexagonal magnet GdGa2 to reveal the experimental signatures of ultrasmall spin cycloids and of a potential Néel-type skyrmion lattice phase induced by a magnetic field.
-
Spin-Spin Interaction Mediated by Rotational Lattice Vibrations
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-24
This study predicts the presence of spin-spin interactions mediated by the angular momentum of lattice vibrations, which can be long-range.
-
Shaping the Future of Materials Science with Tanabe–Sugano Diagrams
Dielectric, optical, and other properties in condensed matter
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
2025-1-21
This special collection published in the Journal of the Physical Society of Japan celebrates 70 Years of Tanabe–Sugano Diagrams, highlighting their continued role in advancing materials with transition metals.
-
Unlocking Secrets of Novel Charge-Orbital States in Transition-Metal Compounds
Cross-disciplinary physics and related areas of science and technology
Electron states in condensed matter
Electronic structure and electrical properties of surfaces and nanostructures
Magnetic properties in condensed matter
Structure and mechanical and thermal properties in condensed matter
2025-1-6
A new Special Topics edition of the Journal of the Physical Society of Japan features articles exploring special transition-metal compounds that exhibit novel charge-orbital states.